Сравнительный анализ методов кластерного анализа в решении задач группировки
Роль информации в мире. Теоретические основы анализа Big Data. Задачи, решаемые методами Data Mining. Выбор способа кластеризации и деления объектов на группы. Выявление однородных по местоположению точек. Построение магического квадранта провайдеров.
Подобные документы
Классификация задач DataMining. Создание отчетов и итогов. Возможности Data Miner в Statistica. Задача классификации, кластеризации и регрессии. Средства анализа Statistica Data Miner. Суть задачи поиск ассоциативных правил. Анализ предикторов выживания.
курсовая работа, добавлен 19.05.2011Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа, добавлен 22.10.2012Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа, добавлен 14.06.2013Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.
реферат, добавлен 13.02.2014- 5. Data mining
Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад, добавлен 16.06.2012 Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.
контрольная работа, добавлен 02.09.2010Классификация задач Data Mining. Задача кластеризации и поиска ассоциативных правил. Определению класса объекта по его свойствам и характеристикам. Нахождение частых зависимостей между объектами или событиями. Оперативно-аналитическая обработка данных.
контрольная работа, добавлен 13.01.2013- 8. Big Data
Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация, добавлен 17.02.2016 Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.
контрольная работа, добавлен 13.06.2014Исследование производительности труда методом компонентного и кластерного анализов. Выбор значащих главных компонент. Формирование кластеров. Построение дендрограммы и диаграммы рассеивания. Правила кластеризации в пространстве исходных признаков.
лабораторная работа, добавлен 25.11.2014OLAP как автоматизированные технологии сложного (многомерного) анализа данных, Data mining - извлечение данных, интеллектуальный анализ. Виды запросов к многомерной базе данных, их содержание и анализ полученных результатов. Схема "звезда", "снежинка".
презентация, добавлен 19.08.2013Понятие информационных систем и принципы их проектирования. Изучение различных методов извлечения знаний, построение оптимальной информационной системы Data Mining, позволяющей разбивать набор данных, представленных реляционными базами данных на кластеры.
аттестационная работа, добавлен 14.06.2010A database is a store where information is kept in an organized way. Data structures consist of pointers, strings, arrays, stacks, static and dynamic data structures. A list is a set of data items stored in some order. Methods of construction of a trees.
топик, добавлен 29.06.2009Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.
эссе, добавлен 17.12.2014- 15. Data Warehouses
Історія виникнення комерційних додатків для комп'ютеризації повсякденних ділових операцій. Загальні відомості про сховища даних, їх основні характеристики. Класифікація сховищ інформації, компоненти їх архітектури, технології та засоби використання.
реферат, добавлен 10.09.2014 Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа, добавлен 13.10.2017Создание методов, оценивающих информационное содержание накопленных массивов наблюдений, проверка внутренней однородности. Пример кластерного анализа, основанного на использовании "цепочечного эффекта" для формирования однородных групп наблюдений.
презентация, добавлен 31.03.2011Системы и задачи их анализа. Методы системного анализа: аналитические; математические. Сущность автоматизации управления в сложных системах. Структура системы с управлением, пути совершенствования. Цель автоматизации управления. Этапы приятия решений.
реферат, добавлен 25.07.2010Исследование систем методами случайного поиска. Изучение сущности метода половинного деления. Сравнительный анализ прямого перебора и половинного деления. Ручной счет. Шаги исследования. Описание окна работающей программы. Блок-схема и код программы.
курсовая работа, добавлен 06.05.2014- 20. Визуализация профиля пользователя социальной сети на основе обработки семантического описания данных
Анализ существующих музыкальных сетей, профиля музыкального файла. Технологии и возможности Web 2.0. Анализ алгоритмов в Data Mining. Структура социальной сети. Набор графических элементов, описывающий человека в зависимости от прослушиваемой музыки.
дипломная работа, добавлен 20.04.2012 Решение задач нелинейного программирования различными методами для проведения анализа поведения этих методов на выбранных математических моделях. Компьютерная реализация выбранных задач нелинейного программирования в среде пакетов Excel и Matlab.
дипломная работа, добавлен 25.01.2013Web content, usage mining. Современные средства анализа лог-файлов. Требования к создаваемой системе, выбор инструментов реализации, описание общей архитектуры. Конвенции программирования, разработки Firebird. Кроссплатформленость, работа с Еxсel.
дипломная работа, добавлен 09.10.2013Решение системы линейных уравнений методами деления отрезка пополам, Гаусса и подбора параметров. Формализация задач при моделировании; построение математических, алгоритмических и программных моделей задач с помощью электронных таблиц Microsoft Excel.
лабораторная работа, добавлен 21.07.2012Особенности решения задач нелинейного программирования различными методами для проведения анализа поведения этих методов на выбранных математических моделях нелинейного программирования. Общая характеристика классических и числовых методов решения.
дипломная работа, добавлен 20.01.2013Рассмотрение методов графического ввода, редактирования и анализа принципиальных схем в режимах анализа переходных процессов (Transient) и частотного анализа (АС). Анализ многовариантного режима (Stepping). Построение годографы в среде программы MICRO-CAP
контрольная работа, добавлен 12.03.2011