Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп
Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.
Подобные документы
Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа, добавлен 26.09.2009Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
дипломная работа, добавлен 18.09.2009Рассмотрение особенностей метода построения полного проверяющего теста для недетерминированных автоматов относительно неразделимости для модели "черного ящика" и разработка предложений по его модификации. Исследование условий усечения дерева преемников.
курсовая работа, добавлен 20.08.2010Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.
курсовая работа, добавлен 10.04.2011Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация, добавлен 18.01.2015Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа, добавлен 22.09.2009Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат, добавлен 19.11.2010Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
дипломная работа, добавлен 18.09.2009Использование метрики Чебышева. Формулы для нахождения расстояний между точками. Использование евклидовой метрики. Центры тяжести кластеров. Разбивка массивов точек на классы. Суммарная выборочная дисперсия разброса элементов относительно центров классов.
методичка, добавлен 20.05.2013Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.
реферат, добавлен 14.03.2011Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат, добавлен 08.02.2013Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат, добавлен 28.03.2014Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.
творческая работа, добавлен 08.08.2010- 40. Теория множеств
Определение понятия множества как совокупности некоторых объектов, объединенных по какому-либо признаку. Классификация операций над множествами. Принципы взаимно однозначного соответствия. Нахождение наибольшего общего делителя и наименьшего кратного.
презентация, добавлен 24.09.2011 Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.
курсовая работа, добавлен 10.03.2014Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.
курсовая работа, добавлен 30.03.2010- 43. Группы матриц
Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа, добавлен 06.03.2014 Построение графиков функций F(x), симметричное их отбражение относительно оси координат ОХ, ОУ, при значениях -F, -x. Особенности построения графиков функций и симметричное отображение относительно осей координат: f(x)+A; f(x+а); kf(x); |f(x)|; |f(|x|)|.
контрольная работа, добавлен 18.03.2010Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.
курсовая работа, добавлен 24.11.2021Изучение основных подгрупп алгоритмов проверки простоты больших чисел: детерминированные и вероятностные проверки. Исследование методов генерации и проверки на простоту больших чисел с помощью метода Ферма (малая теорема Ферма), составление программы.
лабораторная работа, добавлен 27.12.2010Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
задача, добавлен 20.09.2013Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа, добавлен 04.12.2013- 49. Функции
Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.
презентация, добавлен 21.09.2013 Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.
презентация, добавлен 16.11.2014