Прямолинейные образущие гиперболического параболоида
Поверхности второго порядка аналитической геометрии. Свойства гиперболического параболоида, порядок разыскания его прямолинейных образующих. Пример решения уравнения прямолинейных образующих для заданной поверхности гиперболического параболоида.
Подобные документы
Нахождение производных заданной функции. Частные производные первого и второго порядка. Вычисление неопределенных интегралов. Решение задачи комбинаторики. Расчет коэффициентов прямых материальных затрат с помощью межотраслевого балансового метода.
контрольная работа, добавлен 15.04.2013Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.
реферат, добавлен 10.01.2009Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.
контрольная работа, добавлен 22.07.2009Очерк жизни и творчества великого древнегреческого ученого Эвклида, оценка его достижений в области математики. Анализ главных произведений Эвклида, его основополагающие идеи и источники их формирования. Геометрия на поверхности отрицательной кривизны.
реферат, добавлен 13.12.2010Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа, добавлен 29.08.2010Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.
реферат, добавлен 08.05.2011Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа, добавлен 17.05.2010Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013- 109. Основы тригонометрии
По заданному уравнению кривой второго порядка определен вид кривой, фокусы и эксцентриситет. Составление уравнения параболы с вершиной в начале координат. Нахождение производных с помощью формул дифференцирования. Действия над комплексными числами.
контрольная работа, добавлен 16.10.2013 Основные формулы, используемые в исследовании. Определение стохастической устойчивости и структура соответствующих уравнений. Применение второго метода Ляпунова. Скалярные уравнения n-го порядка. Анализ устойчивости по вероятности движений спутника.
курсовая работа, добавлен 21.02.2016Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011Развитие аналитического, логического, конструктивного мышления учащихся и формирование их математической зоркости. Изучение тригонометрии в курсе геометрии основной школы, методы решения нестандартных задач из курса 8 класса и из альтернативных учебников.
курсовая работа, добавлен 01.03.2014Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.
контрольная работа, добавлен 11.05.2013Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа, добавлен 23.07.2012- 115. Метод хорд
Контрольный пример к алгоритму метода хорд. Вычисление и уточнение корня методом хорд и касательных. Нахождение второй производной заданной функции. Уточненное значение корня решаемого уравнения на заданном интервале. Код программы данного примера.
лабораторная работа, добавлен 02.12.2014 - 116. Призма
Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.
презентация, добавлен 08.03.2012 Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.
презентация, добавлен 17.05.2012Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция, добавлен 02.06.2008Гиперкомплексные числа: общее понятие и основные свойства. Нахождение корней трансцендентного уравнения в комплексных числах на примере уравнения классической задачи теории флаттера в математическом виде. Программная реализация решения в среде Maple.
контрольная работа, добавлен 28.06.2013Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.
контрольная работа, добавлен 23.02.2012Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.
курсовая работа, добавлен 22.10.2014Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа, добавлен 08.05.2009- 123. Линейные уравнения
Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.
дипломная работа, добавлен 18.09.2011 - 124. Сетка Вульфа
Сетка Вульфа (стереографическая сетка) - проекция меридианов и параллелей сферической поверхности на плоскость основного меридиана. Нахождение длины дуги окружности и радиуса. Построение линий параллелей. Чертеж линии меридиана с заданной долготой.
контрольная работа, добавлен 13.05.2009 Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.
учебное пособие, добавлен 23.04.2009