Скалярное произведение двух векторов
Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
Подобные документы
Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций, добавлен 31.05.2010Описание свойств наследственных насыщенных формаций Фиттинга (замкнутые относительно произведения F-подгрупп) Шеметкова (где минимальная не F-группа является либо группой Шмидта с ненормальной циклической силовой подгруппой, либо простого порядка).
курсовая работа, добавлен 14.02.2010Изучение некоторых методов построения отрезков, равных произведению или отношению двух других отрезков, с помощью циркуля и линейки. Использование произвольно выбранного единичного отрезка, а также определение произведения и деления этих отрезков.
творческая работа, добавлен 04.09.2010Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.
методичка, добавлен 26.10.2009Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.
учебное пособие, добавлен 18.04.2012Особенности и свойства односторонней поверхности; непрерывно зависящая от точки нормаль, свойство нормального вектора возвращаться в исходную точку с противоположным вектором. Лента Мёбиуса - односторонняя поверхность с краем, особенности бутылки Клейна.
презентация, добавлен 12.02.2012- 107. Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп
Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).
дипломная работа, добавлен 14.02.2010 Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.
курсовая работа, добавлен 14.02.2010История исследований в области теории дифференциальных квадратичных форм. Линейные преобразования, индексные обозначения и общее определение тензоров. Скалярное произведение и метрические тензоры, действия с тензорами, поднятие и опускание индексов.
курсовая работа, добавлен 18.06.2010Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.
контрольная работа, добавлен 25.03.2011Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.
курсовая работа, добавлен 14.11.2010Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.
презентация, добавлен 24.06.2012Размеры прямоугольной, квадратной, диагональной, скалярной матриц. Линейные операции над матрицами. Умножение строки на столбец (скалярное произведение). Транспонирование матрицы, ее элементы. Образование треугольной таблицы, состоящей из строк, столбцов.
презентация, добавлен 03.12.2016Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.
учебное пособие, добавлен 23.12.2009Исследование однопараметрической системы дифференциальных уравнений: нахождение линеаризации поля в особых точках, собственных чисел и векторов, периодов циклов. Изменение фазового портрета при значениях параметра вблизи его бифуркационного значения.
курсовая работа, добавлен 18.07.2014Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.
презентация, добавлен 01.11.2013Алгоритм и логика решения задач категории B8 из раздела "математический анализ" Единого государственного экзамена. Определение точек максимума и минимума. Нахождение интервалов возрастания и убывания функции. Геометрический смысл определенного интеграла.
методичка, добавлен 23.04.2013Функциональные ряды. Неопределенный интеграл и его свойства. Асимптоты. Экстремум функции (для одной переменной). Производная: ее геометрический и физический смысл. Замечательные пределы. Точки разрыва функции, классификация. Предел функции по Гейне.
шпаргалка, добавлен 05.01.2008Параллельность, коллинеарность, перпендикулярность. Коллинеарность векторов. Коллинеарность трёх точек. Перпендикулярность отрезков. Углы и площади. Угол между векторами. Площадь треугольника. Многоугольники. Прямая и окружность.
курсовая работа, добавлен 08.08.2007- 120. Операции с матрицами
Доказательство линейной независимости системы векторов пирамиды. Расчет длины ребра, угла между ребрами. Составление уравнения прямой и плоскости. Выполнение операций для матриц. Величина главного определителя. Поиск алгебраических дополнений матрицы.
контрольная работа, добавлен 20.03.2017 - 121. Проекции и диаграммы
Азимутально-полярная проекция как проекция сферы на плоскость. Построение кругов параллелей и линий меридианов. Параллель как малый круг, полученный от сечения сферы плоскостью, параллельной плоскости экватора. Отображение меридианов и полюсов сферы.
контрольная работа, добавлен 13.05.2009 - 122. Линейная алгебра
Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.
контрольная работа, добавлен 11.12.2012 - 123. Бипримарные группы
Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009 Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.
курсовая работа, добавлен 21.02.2010Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.
презентация, добавлен 16.04.2012