История квадратных уравнений
Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.
Подобные документы
История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат, добавлен 09.05.2009Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.
реферат, добавлен 18.12.2012Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья, добавлен 05.01.2010Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат, добавлен 06.09.2006История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.
презентация, добавлен 20.09.2015Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.
презентация, добавлен 20.09.2015Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.
презентация, добавлен 20.09.2015Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.
контрольная работа, добавлен 17.09.2010История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 09.10.2008Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация, добавлен 16.01.2011Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.
презентация, добавлен 31.05.2019Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.
реферат, добавлен 11.09.2010Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат, добавлен 30.04.2011Теоретические аспекты обучения решению уравнений в 8 классе. Основные направления изучения линий уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Методико-педагогические основы обучения решению квадратных уравнений.
курсовая работа, добавлен 01.07.2008Классические каноны в живописи, связанные с математикой: изображение человека, расположение предметов, соотношение мелких и крупных предметов. Роль математики в профессии юриста. Обоснование необходимости знаний математики для врачей и воспитателей.
презентация, добавлен 21.12.2014Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация, добавлен 17.05.2012Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа, добавлен 06.05.2010Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка, добавлен 22.06.2008Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа, добавлен 12.09.2009Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.
курсовая работа, добавлен 01.02.2015Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.
курсовая работа, добавлен 22.11.2011Некоторые крупнейшие советские ученые, труды которых сыграли решающую роль в развитии современной теории вероятностей и её практических приложений. Свойства устойчивых распределений, а также колмогоровские аксиомы элементарной теории вероятностей.
презентация, добавлен 15.05.2014Устные упражнения на уроках математики. Урок усвоения новых знаний. Закрепление материала. Технология закрепления и повторения. Тематический контроль. Работа с разноуровневыми группами в классе. Учебный проект. Методика осуществления учебного проекта.
творческая работа, добавлен 09.10.2008Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.
курсовая работа, добавлен 07.02.2016