Основные этапы становления и структура современной математики
Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.
Подобные документы
Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа, добавлен 13.02.2010Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.
курсовая работа, добавлен 15.06.2015Теория игр – раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта. Итеративный метод Брауна-Робинсона. Монотонный итеративный алгоритм решения матричных игр.
дипломная работа, добавлен 08.08.2007Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация, добавлен 12.04.2015Теоретико-числовая база построения СОК. Теорема о делении с остатком. Алгоритм Евклида. Китайская теорема об остатках и её роль в представлении чисел в СОК. Модели модулярного представления и параллельной обработки информации. Модульные операции.
дипломная работа, добавлен 24.02.2010Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.
презентация, добавлен 15.10.2013Использование формул объема прямоугольного параллелепипеда и площади прямоугольника при расчете расходных материалов для изготовления различных упаковок. Осуществление связей математики с окружающим миром в целях улучшения экономичности упаковки чая.
научная работа, добавлен 11.01.2010Разработка методических аспектов обучения учащихся элементам теории вероятностей. Способы определения, последовательности изложения трактовок вероятности и формирование аксиоматического понятия. Задачи, решаемые при изучении геометрической вероятности.
курсовая работа, добавлен 03.07.2011- 85. Теорема Пифагора
Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация, добавлен 05.12.2010 Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.
презентация, добавлен 28.12.2010Фінансова математика на кредитно-депозитному банківському та страховому ринку. Аналіз практичного застосування методів фінансової математики на фінансових ринках України. Умови вкладів з щомісячним нарахуванням відсотків. Рівні показників інфляції.
дипломная работа, добавлен 16.06.2013Эвклид — древнегреческий математик Александрийской школы, автор первого из дошедших до нас теоретических трактатов по математике. Элементарная (Эвклидова) геометрия — теория, основанная на системе аксиом и постулатов, впервые изложенных в "Началах".
реферат, добавлен 29.01.2014Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.
лекция, добавлен 11.02.2010Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов.
лекция, добавлен 01.12.2009Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа, добавлен 03.01.2008Понятие теории игр как раздела математики, предмет которого - анализ принятия оптимальных решений в условиях конфликта. Общие понятия в теории игр. Коалиция интересов, кооперативная или коалиционная игра. Свойства стратегических эквивалентных игр.
реферат, добавлен 06.05.2010Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".
реферат, добавлен 04.08.2010Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.
курсовая работа, добавлен 01.10.2009Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.
контрольная работа, добавлен 08.06.2010Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.
дипломная работа, добавлен 23.08.2009Теоретические основы, значение, особенности и методика применения различных способов решения нестандартных задач в развитии математического мышления младших школьников. Логические задачи как средство развития математического мышления младших школьников.
курсовая работа, добавлен 19.04.2010Математика как чрезвычайно мощный и гибкий инструмент при изучении окружающего мира. Роль математики в промышленной сфере, строительстве, медицине и жизни человека. Место математического моделирования в создании разнообразных архитектурных моделей.
презентация, добавлен 31.03.2015