Алгоритмы на графах
Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.
Подобные документы
Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.
реферат, добавлен 05.08.2009Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.
реферат, добавлен 12.06.2010Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.
курс лекций, добавлен 27.05.2010Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.
контрольная работа, добавлен 21.07.2010Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.
задача, добавлен 08.11.2010Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.
презентация, добавлен 16.01.2015Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.
курсовая работа, добавлен 08.10.2015Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа, добавлен 19.03.2011Алгоритм перехода к каноническому виду стандартной формы ЗЛП. Симплексные преобразования при изменении базисных переменных. Графический способ упорядочения вершин. Расчет параметров сетевого графика. Устойчивость решений ЗЛП при изменении параметров.
учебное пособие, добавлен 14.07.2011Прямоугольная таблица, составленная из чисел или матрица. Произвольная квадратная матрица, ее численная характеристика (определитель). Определители первого и второго порядка. Понятие минора элемента матрицы. Свойства определителей, транспонирование.
реферат, добавлен 19.08.2009Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
курсовая работа, добавлен 14.10.2010Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа, добавлен 18.11.2013- 39. Матрицы
Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
лекция, добавлен 14.12.2010 История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат, добавлен 14.05.2015Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.
презентация, добавлен 06.12.2011- 42. Эйлеровы графы
Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.
презентация, добавлен 12.04.2014 История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа, добавлен 20.12.2015Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.
учебное пособие, добавлен 26.01.2009Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.
курсовая работа, добавлен 27.03.2011Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат, добавлен 17.06.2014- 47. Свойства пирамид
Отрезки, соединяющие вершину пирамиды с вершинами основания. Поверхность пирамиды, основание и боковые грани. Определение высоты пирамиды. Произвольные, усеченные и правильные пирамиды. Нахождение боковой поверхности правильной пирамиды и ее объема.
презентация, добавлен 08.06.2011 Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. История развития пирамиды; виды, элементы, углы, развёртка, свойства; теоремы, связывающие ее с другими геометрическими телами; формулы.
презентация, добавлен 28.03.2012Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.
контрольная работа, добавлен 12.05.2016Основні положення теорії графов. Алгоритм розфарбування графу методом неявного перебору. Задання графу матрицею суміжності. Особливості програмної реалізації на мові Turbo Pascal алгоритму оптимального розфарбування вершин завантаженого з файлу графа.
курсовая работа, добавлен 15.06.2014