Биография Фибоначи
Жизнь и деятельность известного итальянского математика позднего Средневековья Леонардо из Пизы, известного как Фибоначчи. Последовательность цифр, именуемая рядом Фибоначчи, ее свойства. Коэффициент пропорциональности, называемый золотым сечением.
Подобные документы
Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.
реферат, добавлен 09.07.2009Коротка біографія Леонардо Пізанського (відоміший як Фібоначчі) - найвидатнішого західного математика Середньовіччя. Значення та основні властивості чисел Фібоначчі. Золотий переріз (формула Біне). Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 07.05.2015Этапы развития натуральных чисел. Сущность метода "решето Эратосфена" и проблемы Гольдбаха. Свойства, законы и закономерности фигурных, многоугольных, совершенных, дружественных, компанейских цифр. Мистические представления о значениях 666 и 1001.
реферат, добавлен 18.01.2011Как высшая математика разрешает философские парадоксы. Математика в апориях Зенона. Точная математическая формулировка интуитивного физического или метафизического понятия непрерывного движения. Попытки избавления от допущений в математических выкладках.
реферат, добавлен 05.01.2013Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат, добавлен 06.09.2006Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.
учебное пособие, добавлен 18.04.2012Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.
учебное пособие, добавлен 23.01.2014Математика Древнего и Средневекового Китая. Правило двух ложных положений. Системы линейных уравнений со многими неизвестными. Начальные этапы развития тригонометрии. Создание позиционной десятичной нумерации. Арифметика натуральных чисел и дробей.
дипломная работа, добавлен 22.12.2012Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация, добавлен 17.05.2012Математика как всеобщая и абстрактная наука. Задача ее - описание различных процессов формально-логическим способом. Развитие интеллекта школьника, обогащение его методами отбора и анализа информации. Воспитание волевых и гражданских качеств личности.
реферат, добавлен 22.05.2009Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.
статья, добавлен 28.07.2010Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".
реферат, добавлен 09.11.2010Европейская математика эпохи Возрождения. Создание буквенного исчисления Франсуа Виет и метода решения уравнений. Усовершенствование вычислений в конце XVI – начале XVII веков: десятичные дроби, логарифмы. Установление связи тригонометрии и алгебры.
презентация, добавлен 20.09.2015Область определения функции. Точки пересечения графика функции с осями координат. Экстремумы, промежутки возрастания и убывания. Корни полученного квадратного уравнения. Среднее квадратическое отклонение. Коэффициент вариации, максимальное значение ряда.
контрольная работа, добавлен 08.01.2011Краткие теоретические сведения по важнейшим темам курса "Высшая математика", рассмотрены типовые задачи с учетом ГОСа по специальности "Информационные системы" и "Вычислительные системы и комплексы", предложены контрольно-измерительные материалы.
учебное пособие, добавлен 30.11.2009Математика как язык науки. Математический язык описания вечности и пространства. Математика является языком науки в целом, но каждая конкретная наука должна "разговаривать" на собственном (специфическом) диалекте этого языка.
реферат, добавлен 09.06.2006Конспект лекций по дискретной математике
курс лекций, добавлен 07.08.2007- 43. Труды Эйлера
Леонард Эйлер — швейцарский, немецкий и российский математик; биография, вклад в развитие механики, физики, астрономии; автор исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
реферат, добавлен 22.12.2011 Дискретный периодический сигнал, представленный рядом Фурье. Прямое и обратное дискретное преобразование. Его свойства: линейность и симметрия. Алгоритм вычисления круговой свертки сигналов. Равенство Парсеваля для них. Связь ДПФ с Z-преобразованием.
презентация, добавлен 19.08.2013Она прожила короткую, но яркую жизнь. Много ей довелось пережить: научную славу и литературное признание, сомнение и неуверенность, недовольство собой и одиночество. Литературное наследие.
творческая работа, добавлен 18.06.2007Биография Архимеда - древнегреческого математика, физика и инженера из Сиракуз. Исследования по геометрии, арифметике и алгебре. Книги "О равновесии плоских фигур" и "О плавании тел", "О коноидах и сфероидах", "О шаре и цилиндре", "Измерение круга".
презентация, добавлен 17.11.2014Греческая математика и её философия. Взаимосвязь и совместный путь философии и математики от начала эпохи возрождения до конца XVII века. Философия и математика в эпохе Просвещения. Анализ природы математического познания немецкой классической философии.
дипломная работа, добавлен 07.09.2009- 48. Теорема Менелая
Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.
презентация, добавлен 17.11.2013 Анализ научной деятельности А. Фоменко: знакомство с трудами великого русского учёного Н. Морозова, рассмотрение открытий. Особенности работы "Новая хронология". Краткая биография российского математика. Характеристика идей научных работ А. Фоменко.
реферат, добавлен 15.01.2013Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.
презентация, добавлен 19.03.2012