Добыча знаний и управление ими
Анализ интеллектуально-информационных ресурсов как движущей силы современного общества. Стратегии получения знаний. Характеристика преимуществ статистических пакетов и нейронных сетей. Архитектура инструментария для интеллектуального анализа MineSet.
Подобные документы
Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.
курсовая работа, добавлен 14.03.2009Общие сведения о глобальных сетях с коммутацией пакетов, построение и возможности сетей, принцип коммутации пакетов с использованием техники виртуальных каналов. Характеристики и возможности коммутаторов сетей, протоколы канального и сетевого уровней.
курсовая работа, добавлен 26.08.2010- 28. Нейронные сети
Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат, добавлен 16.03.2011 - 29. Нейронные сети
Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.
презентация, добавлен 25.06.2013 Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.
курс лекций, добавлен 14.01.2011Характеристика и назначение, принцип работы и структура программ Microsoft Word, Excel, Access, браузера Internet Explorer. Правила работы с данным программным обеспечением, оценка преимуществ и недостатков, возможности. Разработка алгоритма программы.
курсовая работа, добавлен 23.04.2010Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа, добавлен 22.06.2011Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат, добавлен 17.12.2011Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.
лабораторная работа, добавлен 20.05.2013Понятие информационных систем и принципы их проектирования. Изучение различных методов извлечения знаний, построение оптимальной информационной системы Data Mining, позволяющей разбивать набор данных, представленных реляционными базами данных на кластеры.
аттестационная работа, добавлен 14.06.2010Сущность данных и информации. Особенности представления знаний внутри ИС. Изучение моделей представления знаний: продукционная, логическая, сетевая, формальные грамматики, фреймовые модели, комбинаторные, ленемы. Нейронные сети, генетические алгоритмы.
реферат, добавлен 19.06.2010Разработка и внедрение автоматизированного комплекса проверки знаний, позволяющего производить одновременный контроль знаний до 127 рабочих мест. Система сбора и обработки информации на основе локальной микросети на базе микропроцессорных контроллеров.
курсовая работа, добавлен 23.12.2012Исследование эффективности применения нейронных сетей в рамках отношений между людьми. Принцип работы с нейросимулятором. Составление обучающей выборки и проектирование персептронов. Анализ выбора супружеской пары с использованием нейросетевых технологий.
презентация, добавлен 19.08.2013Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.
контрольная работа, добавлен 11.01.2016Способы применения нейронных сетей для решения различных математических и логических задач. Принципы архитектуры их построения и цели работы программных комплексов. Основные достоинства и недостатки каждой из них. Пример рекуррентной сети Элмана.
курсовая работа, добавлен 26.02.2015Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа, добавлен 29.09.2014Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.
курсовая работа, добавлен 14.12.2014Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.
дипломная работа, добавлен 06.11.2011Роль информационных технологий в жизни общества. Процесс системной интеграции компьютерных средств, коммуникационных технологий с целью получения новых общесистемных свойств. Развитие цифровых рынков, электронных социальных и хозяйствующих сетей.
презентация, добавлен 18.03.2014Понятие и сущность информационной инфраструктуры, категории участников процесса обмена информацией. Критерии выбора стандартов на представление информационных ресурсов. Категории и архитектура информационных баз данных регионов Российской Федерации.
реферат, добавлен 12.01.2012- 46. Нейронные сети
Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.
реферат, добавлен 30.09.2013 Обзор автоматизированных систем обучения и контроля знаний. Психологические механизмы усвоения знаний. Принципы создания тестирующей программы. Разработка универсальной схемы построения теста и вычисления оценок специалистов по неразрушающему контролю.
дипломная работа, добавлен 24.09.2013Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Исследование различных моделей представления знаний. Определения их понятия. Разработка операции над знаниями в логической модели.
курсовая работа, добавлен 18.02.2011Изучение пространственных характеристик АГК и структур НС при обработке ими стохастических сред, подбор алгоритмов. Рекомендаций по использованию разработанных адаптивных алгоритмов с корреляционными методами получения оценок для регрессионных моделей.
дипломная работа, добавлен 06.05.2011- 50. Виртуальная модель предметной области дисциплины "Представление знаний в информационных системах"
Обоснование использования виртуальной модели, средства для разработки функциональных модулей. Разработка виртуальной модели "Представление знаний в информационных системах". Разработка алгоритмов построения виртуальной модели предметной области.
дипломная работа, добавлен 12.08.2017