Аффинные и проективные многообразия
Введение в алгебраическую геометрию. Определения аффинных многообразий: фиксированное алгебраически замкнутое поле; аффинное пространство, топология Зорисского на аффинной прямой; нётерово топологическое пространство. Понятия проективных многообразий.
Подобные документы
В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.
задача, добавлен 07.05.2003Упорядоченные множества. Решётки. Дистрибутивные решётки. Топологические пространства. Верхние полурешётки. Стоуново пространство. Множество простых идеалов с введенной на нём топологией.
дипломная работа, добавлен 08.08.2007Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.
лекция, добавлен 11.02.2010- 29. Уравнение линии
Способы задания прямой на плоскости. Уравнение с угловым коэффициентом. Рассмотрение частных случаев. Уравнение прямой, проходящей через заданную точку в заданном направлении. Построение графика прямой, проходящей через две точки. Рассмотрение примера.
презентация, добавлен 21.09.2013 Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.
презентация, добавлен 14.10.2014В условиях развития технологий возрос спрос на людей, обладающих нестандартным мышлением, умеющих ставить и решать новые задачи. Введение в топологию. Теорема Жордана о замкнутой кривой. Проблема четырёх красок. Самоподобные геометрические объекты.
дипломная работа, добавлен 29.06.2008Функция одной независимой переменной. Основные определения и понятия: число (рациональное, иррациональное), числовая ось, абсолютная величина, функция (основные ее элементы). Графики функций. Пределы, натуральный логарифм. Непрерывность функции.
учебное пособие, добавлен 05.04.2009Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.
методичка, добавлен 18.05.2010Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа, добавлен 16.06.2012- 35. Алгебра
Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.
учебное пособие, добавлен 02.03.2009 Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.
презентация, добавлен 17.05.2012Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.
реферат, добавлен 12.11.2010Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат, добавлен 24.04.2009Выпуклые многогранники и их "ежи". Понятие опорной плоскости и ее свойства. Пересечение конечного числа полупространств. Множество векторов в пространстве. Многогранники с центрально-симметричными гранями и центрально-симметричные многогранники.
презентация, добавлен 22.04.2013- 40. Математика
Определитель и его свойства. Элементарные преобразования, миноры и алгебраические дополнения. Элементы векторной алгебры. Уравнения линии на плоскости. Расстояние от точки до прямой. Введение в математический анализ. Тригонометрическая форма числа.
методичка, добавлен 10.01.2012 Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.
презентация, добавлен 20.11.2014Решение системы линейных алгебраических уравнений по формулам Крамера. Составление уравнение линии, каждая точка которой является центром окружности, касающейся оси абсцисс и проходящей через точку. Нахождение размерности и базиса пространства.
контрольная работа, добавлен 28.03.2012Общее и каноническое уравнение прямой, декартова прямоугольная система. Перпендикулярность вектора к прямой и параметрические уравнения. Угловой коэффициент и наклон прямой к оси. Тангенс угла наклона и представление отрезка, отсекаемого линией.
лекция, добавлен 17.12.2011Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
контрольная работа, добавлен 21.02.2010Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.
курсовая работа, добавлен 12.10.2009Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа, добавлен 24.11.2009Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат, добавлен 16.01.2010Краткая историческая сводка о системе координат. Криволинейные, полярные и сферические системы координат. Рене Декарт - французский философ, физик и математик. Декартова прямоугольная система координат (на плоскости и в трёхмерном пространстве).
презентация, добавлен 29.06.2010Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация, добавлен 30.10.2013Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа, добавлен 17.06.2015