Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні
Обчислення довжини дуги для просторової кривої, що задана параметрично. Варіант розрахунку у випадку задання кривої в полярній системі координат. Формули для обчислення площі поверхні обертання. Вираз площі циліндричної поверхні через елементарні функції.
Подобные документы
Джерела неточностей у процесі обчислень. Види наближених значень. Абсолютні та граничні похибки. Поняття значущої цифри. Зв'язок числа вірних знаків наближеного числа з його відносною помилкою. Правила округлення чисел. Оцінка відносної похибки функції.
презентация, добавлен 06.02.2014Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.
курсовая работа, добавлен 18.07.2010- 28. Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Використання методу Монтгомері як ефективний шлях багаторазового зведення за модулем. Складність операцій з многочленами та обчислення їх значень. Алгоритм Руфіні-Горнера. Визначення рекурсивного процесу для множення. Доведення алгоритму Тоома-Кука.
контрольная работа, добавлен 07.02.2011 Основні поняття поворотної симетрії. Означення, задання та властивості повороту площини. Формула повороту площини в координатах. Поворотна симетрія в природі. Розв'язання задач з геометрії за допомогою повороту (на обчислення, на побудову, на доведення).
курсовая работа, добавлен 02.11.2013Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.
контрольная работа, добавлен 23.03.2011Визначення основних понять і вивчення методів аналізу безкінечно малих величин. Техніка диференціального і інтегрального числення і вирішення прикладних завдань. Визначення меж числової послідовності і функції аргументу. Обчислення інтегралів.
курс лекций, добавлен 14.03.2011Побудова сіткової функції при чисельному інтегруванні по заданій підінтегральній функції. Визначення формул прямокутників та трапецій; оцінка їх похибок. Використання методики інтегрування за методом трапецій для обчислення визначеного інтеграла.
презентация, добавлен 06.02.2014Середні значення, характеристики варіаційного ряду, властивості, методи їх обчислення та оцінки. Наукова основа статистичного аналізу. Приклади вирішення задач на обчислення середнього арифметичного, перевірки гіпотез. Метод відліку від умовного нуля.
контрольная работа, добавлен 25.12.2010Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.
лекция, добавлен 04.09.2003Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.
презентация, добавлен 06.02.2014Огляд складання програми на мові програмування С++ для обчислення чотирьох лінійної системи рівнянь матричним методом. Обчислення алгебраїчних доповнень до елементів матриці. Аналіз ітераційних методів, заснованих на використанні повторюваного процесу.
практическая работа, добавлен 28.05.2012- 37. Поверхні
Поняття та властивості поверхонь, їх класифікація та різновиди, відмінні риси. Креслення багатогранників та тіл обертання, правила та закономірності. Перетин поверхонь з прямою та площиною. Побудова лінії перетину поверхонь. Спосіб посередників.
реферат, добавлен 13.11.2010 Історія розвитку обчислювальної техніки. Особливості застосування швидкодіючих комп'ютерів для розв’язання складних математичних задач. Методика написання програми для обчислення визначених інтегралів за формулами прямокутників, трапецій та Сімпсона.
курсовая работа, добавлен 07.10.2010Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.
контрольная работа, добавлен 06.08.2010Теорія обернених матриць та їх знаходження за формулою. Оберненні матриці на основі яких складається написання програми обчислення оберненої матриці до заданої. Побудова матриць та їх характеристика. Приклади проведення розрахунків при обчисленні матриць.
курсовая работа, добавлен 06.12.2008Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
реферат, добавлен 02.05.2011Побудова дотичної площини та нормалі до поверхні. Геометричний зміст диференціала функції двох змінних. Поняття скалярного поля, зв'язок між градієнтом і похідною в даній точці. Формула Тейлора для функції двох змінних та її локальні екстремуми.
реферат, добавлен 14.05.2011Метод Монте-Карло як метод моделювання випадкових величин з метою обчислення характеристик їхнього розподілу, оцінка похибки. Обчислення кратних інтегралів методом Монте-Карло, його принцип роботи. Приклади складання програми для роботи цим методом.
контрольная работа, добавлен 22.12.2010Поняття подвійного та потрійного інтегралів. Кратні інтеграли в криволінійних координатах. Геометричні й фізичні додатки кратних інтегралів. Криволінійні й поверхневі інтеграли. Спосіб обчислення криволінійного інтеграла першого та другого роду.
курсовая работа, добавлен 14.01.2011Вивчення властивостей підгрупи Фиттинга. Умова існування доповнень до окремих підгруп. Визначення нильпотентної довжини розв'язної групи. Доведення ізоморфності кінцевої нерозв'язної групи з нильпотентними додаваннями до непонадрозв'язних підгруп.
дипломная работа, добавлен 17.01.2011Сутність фізичного та геометричного змісту похідної, особливості його використовування у математичних задачах. Означення диференціалу, формула його обчислення. Екстремуми функцій двох змінних. Правила знаходження найбільшого і найменшого значення функції.
презентация, добавлен 20.05.2015Геометричні фігури, що розглядаються в планіметрії - розділі геометрії, в якому вивчають фігури на площині. Визначення кута, трикутника, квадрата, чотирикутника, ромба, паралелограма, трапеції, багатокутника та їх площ античними та сучасними методами.
реферат, добавлен 02.05.2010Поняття сукупності предметів, об'єднаних за певною характеристичною ознакою. Основні загальноприйняті множини (геометрична фігура, ГМТ, область визначення та значень функції). Позначення множин, їх елементи, належність об'єктів та способи задання.
презентация, добавлен 19.01.2011Обчислення середньорічних показників динаміки. Визначення рівних рядів і відсутних в таблиці ланцюгових характеристик динаміки. Визначення абсолютної зміни витрат на виробництво в цілому та за рахунок окремих факторів, грошових витрат на виробництво.
контрольная работа, добавлен 20.11.2009Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах. Застосування формул перетворення координат та оберненого перетворення. Функціональний визначник Якобі або якобіан. Подвійні інтеграли в рішенні задач з геометрії й механіки.
контрольная работа, добавлен 23.03.2011