Полунормальные подгруппы конечной группы
Характеристика и основополагающие свойства силовых подгрупп конечных групп, определение и доказательство соответствующих лемм. Понятие и свойства супердобавлений. Строение группы с максимальной и силовской подгруппой, обладающей супердобавлением.
Подобные документы
Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.
курсовая работа, добавлен 06.06.2012Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.
курсовая работа, добавлен 26.09.2009Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.
курсовая работа, добавлен 02.03.2010Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа, добавлен 20.12.2009Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа, добавлен 22.09.2009Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа, добавлен 02.03.2010Цепь как совокупность вложенных друг в друга подгрупп. Описание и применение теоремы Гольфанда. F-абнормальная максимальная подгруппа из G либо p-нильпотентна как бипримарная группа Миллера-Морено. Понятие группы Фробениуса с циклической подгруппой.
курсовая работа, добавлен 07.03.2010Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа, добавлен 21.09.2013Понятие алгебраической системы (группы), ключевые условия, которым она удовлетворяет и ее нейтральный элемент. Основные свойства группы. Мультипликативные и аддитивные циклические подгруппы и группы. Теорема Лагранжа и характеристика следствий из нее.
курсовая работа, добавлен 10.01.2015Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.
курсовая работа, добавлен 18.09.2009Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа, добавлен 19.04.2011Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
курсовая работа, добавлен 26.09.2009Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа, добавлен 07.03.2010Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
дипломная работа, добавлен 18.09.2009- 16. Конечные поля
Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.
курсовая работа, добавлен 18.12.2011 - 17. Группы матриц
Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа, добавлен 06.03.2014 Факторизуемые группы с Х-перестановочными силовскими подгруппами. Классическая теорема Холла о разрешимых группах. Нахождение признаков сверхразрешимости группы на основе условий Х-перестановочности ее подгрупп. Доказательство тождества Дедекинда.
курсовая работа, добавлен 02.03.2010- 19. Теоремы Силова
Доказательство теорем Силова о конечных группах, которые представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Нахождение силовских р-подгрупп.
курсовая работа, добавлен 31.03.2011 Описание свойств наследственных насыщенных формаций Фиттинга (замкнутые относительно произведения F-подгрупп) Шеметкова (где минимальная не F-группа является либо группой Шмидта с ненормальной циклической силовой подгруппой, либо простого порядка).
курсовая работа, добавлен 14.02.2010Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа, добавлен 22.09.2009Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.
курсовая работа, добавлен 10.04.2011Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).
дипломная работа, добавлен 14.02.2010Понятие f-субнормальных подгрупп, их основополагающие характеристики. Построение теории f-субнормальных подгрупп и теории субнормальных подгрупп Виландта. Локальные наследственные формации, обладающие решеточным свойством для f-субнормальных подгрупп.
курсовая работа, добавлен 22.09.2009Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009