Живая геометрия

Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

Подобные документы

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа, добавлен 24.02.2010

  • Очерк жизни и творчества великого древнегреческого ученого Эвклида, оценка его достижений в области математики. Анализ главных произведений Эвклида, его основополагающие идеи и источники их формирования. Геометрия на поверхности отрицательной кривизны.

    реферат, добавлен 13.12.2010

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике, добавлен 15.11.2014

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

    презентация, добавлен 21.05.2012

  • Сущность и основные понятия теории графов, примеры и сферы ее использования. Формирование следствий из данных теорий и примеры их приложений. Методы разрешения задачи о кратчайшем пути, о нахождении максимального потока. Графическое изображение задачи.

    курсовая работа, добавлен 14.11.2009

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа, добавлен 15.03.2011

  • Основные математические постулаты Эвклида. Попытки математиков доказать пятый постулат "О параллельности" как теорему. Основные подходы к подходов к построению гиперболической геометрии, ее содержание, примеры и отличие от эвклидовой аксиоматики.

    контрольная работа, добавлен 25.06.2009

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа, добавлен 20.04.2016

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат, добавлен 06.03.2009

  • Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.

    презентация, добавлен 23.03.2011

  • Применение формул и законов теории вероятности при решении задач. Формула Байеса, позволяющая определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Центральная предельная теорема.

    курсовая работа, добавлен 04.11.2015

  • Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.

    реферат, добавлен 10.05.2011

  • Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.

    методичка, добавлен 26.10.2009

  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья, добавлен 22.06.2008

  • Математическая статистика как наука, методы ее изучения, история становления и развития, новейшие направления исследований. Порядок и этапы статистической обработки экспериментальных данных. Установление законов распределения выборочных совокупностей.

    курсовая работа, добавлен 09.08.2009

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача, добавлен 12.02.2011

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат, добавлен 24.05.2012

  • Расчет параметров экспериментального распределения. Вычисление среднего арифметического значения и среднего квадратического отклонения. Определение вида закона распределения случайной величины. Оценка различий эмпирического и теоретического распределений.

    курсовая работа, добавлен 10.04.2011

  • Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.

    контрольная работа, добавлен 03.09.2010

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа, добавлен 29.05.2006

  • Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.

    курс лекций, добавлен 02.03.2010

  • Теоретические основы аксиоматики Вейля. Непротиворечивость и категоричность аксиоматики Вейля, прямая, плоскость. Аксиоматика Вейля и школьная геометрия. Задачи, решаемые векторным способом. Виды задач о прямых и плоскостях, их решение и доказательство.

    дипломная работа, добавлен 11.12.2012

  • Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.

    дипломная работа, добавлен 11.01.2011

  • Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.

    реферат, добавлен 09.05.2009

  • Использование системы MathCAD как средства описания алгоритмов решения основных математических задач. Рассмотрение законов Кеплера и понятия о всемирном тяготении. Аналитические и численные решения задачи трех тел (материальных точек), вывод уравнений.

    курсовая работа, добавлен 04.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.