Математические основы системы остаточных классов

Теоретико-числовая база построения СОК. Теорема о делении с остатком. Алгоритм Евклида. Китайская теорема об остатках и её роль в представлении чисел в СОК. Модели модулярного представления и параллельной обработки информации. Модульные операции.

Подобные документы

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция, добавлен 07.05.2013

  • Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.

    презентация, добавлен 17.11.2013

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат, добавлен 16.01.2010

  • Курт Гедель как крупнейший специалист по математической логике, краткий очерк его жизни и личностного становления, достижения в сфере профессиональной деятельности. История и основные этапы создания теоремы о неполноте, первой и второй, дискуссии вокруг н

    реферат, добавлен 03.05.2011

  • Квадратные матрицы и определители. Координатное линейное пространство. Исследование системы линейных уравнений. Алгебра матриц: их сложение и умножение. Геометрическое изображение комплексных чисел и их тригонометрическая форма. Теорема Лапласа и базис.

    учебное пособие, добавлен 02.03.2009

  • Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.

    презентация, добавлен 12.04.2014

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация, добавлен 18.12.2012

  • Задачи для обыкновенных дифференциальных уравнений. Квадратурные формулы. Теоретические основы метода сеток для решения задачи Коши. Погрешность аппроксимации, устойчивость, основная теорема метода сеток. Схема предиктор-корректор 2-го порядка.

    реферат, добавлен 07.12.2013

  • Понятие и характерные признаки равносильных уравнений, требования к множеству их решений. Теорема о равносильности уравнений и порядок ее доказательства, значение в современной математике. Порядок и основные этапы нахождения корней уравнения-следствия.

    презентация, добавлен 17.03.2011

  • Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.

    реферат, добавлен 10.09.2009

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа, добавлен 29.05.2006

  • Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство.

    статья, добавлен 30.04.2008

  • Утверждение великого французского математика Пьера Ферма, получившее название "Великая теорема Ферма". Элементарные алгебраические преобразования многочленов. Коэффициенты полиномов Чебышева и формулы Абеля. Система наименьших вычетов по модулю K.

    книга, добавлен 07.01.2011

  • Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.

    презентация, добавлен 18.09.2013

  • Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.

    курсовая работа, добавлен 19.06.2012

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат, добавлен 01.12.2010

  • Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.

    реферат, добавлен 23.02.2011

  • Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.

    реферат, добавлен 14.03.2013

  • Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.

    презентация, добавлен 20.04.2014

  • Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.

    презентация, добавлен 15.10.2013

  • Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.

    презентация, добавлен 17.11.2011

  • Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.

    курс лекций, добавлен 29.11.2009

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация, добавлен 05.12.2010

  • Рішення основних систем лінійних рівнянь. Визначники другого та третього порядку. Властивості визначників, теорема розкладання. Теорема Крамера для систем рівнянь. Доцільність рішення задачі автоматизованим способом. Ймовірність допущення помилок.

    курсовая работа, добавлен 18.12.2010

  • Короткий нарис життя, особистісного та творчого становлення відомого французького математика П'єра Ферма. Історія розробок та формування Великої теореми Ферма, її призначення та сфери використання. Доказ першої та другої леми, доведення для показника 4.

    реферат, добавлен 06.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.