Нечіткий метод групового врахування аргументів
Аналіз математичних моделей технологічних параметрів та методів математичного моделювання. Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання. Суть нечіткого методу групового врахування аргументів.
Подобные документы
- 26. Використання властивості неперервності функції при розв'язуванні різних задач математичного аналізу
Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.
контрольная работа, добавлен 04.04.2012 Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.
презентация, добавлен 06.02.2014Функція двох змінних, методика визначення її головних параметрів. Поняття екстремуму функцій двох змінних, необхідні та достатні умови її існування. Особливості визначення екстремуму функції за деяких умов, які обмежують область зміни аргументів.
курсовая работа, добавлен 22.10.2014Складання плану виробництва при максимальному прибутку. Введення додаткових (фіктивних) змінних, які перетворюють нерівності на рівності. Розв’язування задачі лінійного програмування графічним методом та економічна інтерпретація отриманого розв’язку.
контрольная работа, добавлен 20.11.2009Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.
реферат, добавлен 02.02.2010Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.
курсовая работа, добавлен 09.07.2009Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.
курсовая работа, добавлен 10.04.2011Мережа Петрі як графічний і математичний засіб моделювання систем і процесів. Основні елементи мережі Петрі, правила спрацьовування переходу. Розмітка мережі Петрі із кратними дугами. Методика аналізу характеристик обслуговування запитів на послуги IМ.
контрольная работа, добавлен 06.03.2011Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.
курсовая работа, добавлен 27.12.2010Розв'язання графічним методом математичної моделі задачі з організації випуску продукції. Розв'язання транспортної задачі методом потенціалів. Знаходження умовних екстремумів функцій методом множників Лагранжа. Розв'язання задач симплекс-методом.
контрольная работа, добавлен 16.07.2010Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.
курсовая работа, добавлен 30.11.2010Варіювання неістотних ознак поняття за умови інваріантності істотних. Геометричні задачі, які розв’язуються на основі деяких теорем. Добуток двох додатних множників, сума яких стала. Властивості рівних відношень та й змінні пропорційні показники.
контрольная работа, добавлен 29.04.2014Метод Монте-Карло як метод моделювання випадкових величин з метою обчислення характеристик їхнього розподілу, оцінка похибки. Обчислення кратних інтегралів методом Монте-Карло, його принцип роботи. Приклади складання програми для роботи цим методом.
контрольная работа, добавлен 22.12.2010Історія виникнення методу координат та його розвиток. Канонічні рівняння прямої. Основні векторні співвідношення і формули, які використовуються для розв'язування стереометричних задач. Розробка уроку з використанням координатно-векторного методу.
дипломная работа, добавлен 05.05.2011Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
контрольная работа, добавлен 22.01.2011Запис системи рівнянь та їх розв'язання за допомогою методів оберненої матриці та Гауса. Поняття вектора-стовпця з невідомих та вільних членів. Пошук оберненої матриці до даної. Послідовне виключення невідомих за допомогою елементарних перетворень.
контрольная работа, добавлен 16.07.2010Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.
курсовая работа, добавлен 13.05.2013Теорія графів та її використання у різних галузях. У фізиці: для побудови схем для розв’язання задач. У біології: для розв’язання задач з генетики. Спрощення розв’язання задач з електротехніки за допомогою графів. Математичні розваги і головоломки.
научная работа, добавлен 10.05.2009Виведення рівняння коливань струни. Постановка початкових і кінцевих умов. Розв’язання задачі про коливання нескінченної і напівнескінченної струни. Метод та фізичний зміст формули Даламбера. Розповсюдження хвиль відхилення. Метод Фур'є, стоячі хвилі.
курсовая работа, добавлен 04.04.2011Сутність гармонічної, квадратичної, логарифмічної прогресій. Аналіз методів доведень алгебраїчних нерівностей за допомогою прогресій. Розв'язання задач на дослідження властивостей середнього степеневого для заданих числових послідовностей та нерівностей.
курсовая работа, добавлен 26.04.2012Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа, добавлен 18.06.2015Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.
презентация, добавлен 06.02.2014Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция, добавлен 30.04.2014Задачі, ідея та формули методу Лобачевского-Греффе розв’язання рівнянь, особливості конкретні приклади його використання у випадку дійсних різних коренів. Загальні властивості алгебраїчних рівнянь. Загальна характеристика процесу квадратування коренів.
контрольная работа, добавлен 21.04.2010Умови та особливості використання модифікованого методу Ейлера для отримання другої похідної в кінцево-різницевій формі. Два обчислення функції за крок. Метод Ейлера-Коші як частковий випадок методу Рунге-Кутта. Метод четвертого порядку точності.
презентация, добавлен 06.02.2014