Использование численных методов при решении инженерных задач

Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.

Подобные документы

  • Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.

    курсовая работа, добавлен 15.06.2013

  • Определение корней заданного уравнения графическим методом с применением прикладного программного средства MathCAD. Построение графика при помощи программы MS Excel. Геометрическая интерпретация метода для данного уравнения, определение интервалов.

    контрольная работа, добавлен 20.08.2013

  • Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.

    контрольная работа, добавлен 13.02.2016

  • Применения численного интегрирования. Интерполяционные методы нахождения значений функции. Методы прямоугольников, трапеций и парабол. Увеличение точности, методы Гаусса и Гаусса-Кронрода. Функциональные модели и программная реализация решения задачи.

    курсовая работа, добавлен 25.01.2010

  • Программа вычисления интеграла методом прямоугольников. Решение задачи Коши для дифференциальных уравнений. Модифицированный метод Эйлера. Методы решения краевой задачи для обыкновенного дифференциального уравнения. Задачи линейного программирования.

    методичка, добавлен 18.12.2014

  • Решение нелинейного уравнения шаговым методом, методом половинного деления, методом Ньютона и простой итерации с помощью программы Mathcad. Разбиение промежутка на число n интервалов. Условия сходимости корня. Составление программы для решения на С++.

    лабораторная работа, добавлен 10.05.2012

  • Разработка программного обеспечения для решения нелинейного уравнения методом деления отрезка пополам, методом деления Гаусса. Алгоритм определения и методика уточнения корней. Составление и тестирование программы, ее листинг и оценка эффективности.

    контрольная работа, добавлен 16.12.2013

  • Разработка программы нахождения значения определенного интеграла с помощью метода трапеций. Оценка абсолютной погрешности метода. Использование среды программирования Visual Studio Community 2015 для написания программы. Работа с графическим интерфейсом.

    курсовая работа, добавлен 17.03.2016

  • Сущность построения, особенности применения и теоретическое обоснование алгоритмов приближенного решения математических задач. Основы численного метода, нахождение интерполяционного полинома методом Лагранжа. Руководство программиста и пользователя.

    курсовая работа, добавлен 16.08.2012

  • Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.

    курсовая работа, добавлен 04.03.2013

  • Выбор математической модели задачи. Применение численного интегрирования и его методы: прямоугольников, парабол, увеличения точности, Гаусса и Гаусса-Кронрода. Суть математического метода аппроксимации. Интерполяционные методы нахождения значений функции.

    курсовая работа, добавлен 08.04.2009

  • Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.

    курсовая работа, добавлен 15.06.2013

  • Разработка программы, которая по заданной самостоятельно функции будет выполнять интегрирование методом прямоугольников. Блок-схема алгоритма вычисления интеграла (функция rectangle_integrate). Экспериментальная проверка программы, ее текст на языке C.

    курсовая работа, добавлен 27.05.2013

  • Разработка прикладного программного обеспечения для решения расчетных задач для компьютера. Численное интегрирование - вычисление значения определённого интеграла. Проектирование алгоритма численного метода. Тестирование работоспособности программы.

    курсовая работа, добавлен 03.08.2011

  • Идея численного интегрирования. Создание программы, вычисляющей определенный интеграл методом трапеций. Листинг программы, результаты работы. Проверка в среде Mathcad. Зависимость точности вычисления от количества отрезков разбиения, расчет погрешности.

    отчет по практике, добавлен 28.04.2013

  • Численные методы. Создание программного продукта, использование которого позволит одновременно исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона. Рассмотрен ход вычисления интеграла в виде кода программы.

    курсовая работа, добавлен 14.04.2019

  • Использование нестандартных функций и подпрограмм (процедур) для составления алгоритмов вычислений. Программы для вычисления значение корней нелинейного уравнения по методу половинного деления. Составление алгоритма операций над матрицами и интегралами.

    курсовая работа, добавлен 23.08.2015

  • Построение аппроксимирующей зависимости методом наименьших квадратов. Расчет интеграла по Ричардсону. Последовательность действий при аппроксимации экспоненциальной зависимостью. Определение корня уравнения методом простых итераций и решение задачи Коши.

    курсовая работа, добавлен 13.03.2013

  • Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.

    курсовая работа, добавлен 22.08.2012

  • Метод половинного деления при приближенном вычислении алгебраических и трансцендентных выражений. Решение системы уравнений методом Крамера. Блок-схема программы Glav. Описание стандартных и нестандартных процедур и функций, интерфейса. Численные примеры.

    курсовая работа, добавлен 29.07.2013

  • Сравнение эффективности программ Excel и Mathcad при решении задач нахождения корней нелинейного уравнения и поиска экстремумов функции. Проведение табулирования функции на заданном интервале. Построение графика двухмерной поверхности в Excel и Mathcad.

    курсовая работа, добавлен 07.05.2013

  • Математическое описание численных методов решения уравнения, построение графика функции. Cтруктурная схема алгоритма с использованием метода дихотомии. Использование численных методов решения дифференциальных уравнений, составление листинга программы.

    курсовая работа, добавлен 19.12.2009

  • Численные решения задач методом Коши, Эйлера, Эйлера (модифицированный метод), Рунге Кутта. Алгоритм, форма подпрограммы и листинг программы. Решение задачи в MathCad. Подпрограмма общего решения, поиск максимальных значений. Геометрический смысл задачи.

    курсовая работа, добавлен 17.05.2011

  • Основные методы структурного программирования. Методы половинного деления, Крамера, прямоугольников. Применение языка программирования Turbo Pascal 7.0. Решение системы линейных алгебраических уравнений. Описание стандартных и не стандартных функций.

    курсовая работа, добавлен 14.01.2015

  • Сущность задач оптимизации и методы их решения с ориентацией на современные средства компьютерной техники. Область допустимых решений. Структура оптимизационной модели. Проверка правильности нахождения точек координат методом половинного деления.

    курсовая работа, добавлен 25.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.