Моделирование случайной величины, распределенной по нормальному закону

Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

Подобные документы

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа, добавлен 30.01.2015

  • Получение интервальной оценки. Построение доверительного интервала. Возникновение бутстрапа или практического компьютерного метода определения статистик вероятностных распределений, основанного на многократной генерации выборок методом Монте-Карло.

    курсовая работа, добавлен 22.05.2015

  • Критерий Пирсона, формулировка альтернативной гипотезы о распределении случайной величины. Нахождение теоретических частот и критического значения. Отбрасывание аномальных результатов измерений при помощи распределения. Односторонний критерий Фишера.

    лекция, добавлен 30.07.2013

  • Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

    контрольная работа, добавлен 26.07.2010

  • История открытия нормального закона, его применение в науке и технике. Вероятность попадания случайной величины, подчиненной нормальному закону, на заданный участок. Нормальная функция распределения. Геометрическая интерпретация вероятного отклонения.

    контрольная работа, добавлен 21.04.2019

  • Теория вероятностей и математическая статистика являются науками о методах количественного анализа массовых случайных явлений. Множество значений случайной величины называется выборкой, а элементы множества – выборочными значениями случайной величины.

    реферат, добавлен 26.12.2008

  • Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.

    контрольная работа, добавлен 02.02.2011

  • Определение вероятность срабатывания устройств при аварии. Расчет математического ожидания, дисперсии и функции распределения по заданному ряду распределения. Построение интервального статистического ряда распределения значений статистических данных.

    контрольная работа, добавлен 12.02.2012

  • Определение дифференциальной функции распределения f(x)=F'(x) и математического ожидания случайной величины Х. Применение локальной и интегральной теоремы Лапласа. Составление уравнения прямой линии регрессии. Определение оптимального плана перевозок.

    контрольная работа, добавлен 12.11.2012

  • Определение числовых характеристик производной случайной функции. Расчет корреляционной функции и дисперсии спектральной плотности. Группировка заданной выборки, построение выборочной функции распределения и гистограммы, доверительного интервала.

    контрольная работа, добавлен 02.06.2010

  • Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.

    контрольная работа, добавлен 17.03.2011

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа, добавлен 23.06.2009

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа, добавлен 02.02.2012

  • Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.

    контрольная работа, добавлен 14.11.2010

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа, добавлен 11.02.2014

  • Расчет наступления определенного события с использованием положений теории вероятности. Определение функции распределения дискретной случайной величины, среднеквадратичного отклонения. Нахождение эмпирической функции и построение полигона по выборке.

    контрольная работа, добавлен 14.11.2010

  • Среднее арифметическое (математическое ожидание). Дисперсия и среднеквадратическое отклонение случайной величины. Третий центральный момент и коэффициент асимметрии. Законы распределения. Построение гистограммы. Критерий Пирсона. Доверительный интервал.

    курсовая работа, добавлен 29.03.2013

  • Определение вероятности наступления заданного события. Расчет математических величин по формуле Бернулли и закону Пуассона. Построение эмпирической функции распределения, вычисление оценки математического ожидания и доверительных интегралов для него.

    курсовая работа, добавлен 26.03.2012

  • Статическая проверка статистических гипотез. Ошибки первого и второго рода. Числовые характеристики случайной величины, распределенной по биномиальному закону. Проверка гипотезы о биномиальном распределении генеральной совокупности по критерию Пирсона.

    курсовая работа, добавлен 03.05.2011

  • Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.

    контрольная работа, добавлен 04.01.2011

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа, добавлен 31.05.2010

  • Задача на определение вероятности попадания при одном выстреле первым орудием, при условии, что для второго орудия эта вероятность равна 0,75. Интегральная формула Лапласа. Решение задачи на определение математического ожидания случайной величины.

    контрольная работа, добавлен 12.01.2010

  • Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.

    контрольная работа, добавлен 28.04.2010

  • Оценивание параметров закона распределения случайной величины. Точечная и интервальная оценки параметров распределения. Проверка статистической гипотезы о виде закона распределения, нахождение параметров системы. График оценки плотности вероятности.

    курсовая работа, добавлен 28.09.2014

  • Математические методы систематизации и использования статистических данных для научных и практических выводов. Закон распределения дискретной случайной величины. Понятие генеральной совокупности. Задачи статистических наблюдений. Выборочное распределение.

    реферат, добавлен 10.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.