Интегрирование иррациональных функций

Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.

Подобные документы

  • Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.

    презентация, добавлен 18.09.2013

  • Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.

    курсовая работа, добавлен 21.05.2012

  • Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.

    курсовая работа, добавлен 02.11.2010

  • Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.

    реферат, добавлен 21.01.2011

  • Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.

    контрольная работа, добавлен 12.06.2012

  • Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.

    контрольная работа, добавлен 29.03.2018

  • Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.

    методичка, добавлен 15.11.2014

  • Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.

    контрольная работа, добавлен 18.12.2013

  • Способы построения аналитических функций, конформно отображающих одну заданную область на другую. Описание практических приемов нахождения отображающих функций помощи интеграла Кристоффеля-Шварца. Характеристика теории функций комплексного переменного.

    учебное пособие, добавлен 14.05.2013

  • Основные понятия и утверждения иррациональных уравнений, базовые принципы их решения. Теоремы о равносильности преобразований. Примеры общих классов иррациональных уравнений. Разработка и пример решения системы упражнений на каждый класс уравнений.

    курсовая работа, добавлен 05.05.2014

  • Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.

    лекция, добавлен 18.10.2013

  • Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.

    реферат, добавлен 30.11.2023

  • Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).

    учебное пособие, добавлен 28.12.2013

  • Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.

    контрольная работа, добавлен 01.03.2017

  • Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.

    реферат, добавлен 27.12.2013

  • Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.

    презентация, добавлен 30.10.2013

  • Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.

    методичка, добавлен 14.12.2016

  • Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.

    учебное пособие, добавлен 05.04.2011

  • Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.

    учебное пособие, добавлен 19.12.2013

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.

    контрольная работа, добавлен 10.05.2016

  • Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.

    шпаргалка, добавлен 25.01.2016

  • Множество чисел как упорядоченное множество бесконечных десятичных дробей. Изучение ограниченных и бесконечно малых последовательностей. Изучение первообразной функции и неопределенного интеграла. Дифференциальное исчисление функций многих переменных.

    курс лекций, добавлен 11.05.2015

  • Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.

    статья, добавлен 26.05.2018

  • Анализ правил дифференцирования. Производные основных элементарных функций. Правило Лопиталя и его применение к вычислению пределов. Суть свойств неопределенного интеграла. Способы непосредственного подсчета вероятности. Главные элементы комбинаторики.

    шпаргалка, добавлен 07.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.