Интегрирование иррациональных функций
Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.
Подобные документы
Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
презентация, добавлен 18.09.2013Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.
курсовая работа, добавлен 21.05.2012Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.
курсовая работа, добавлен 02.11.2010Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.
контрольная работа, добавлен 12.06.2012Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.
контрольная работа, добавлен 29.03.2018- 107. Численные методы
Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.
методичка, добавлен 15.11.2014 Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Способы построения аналитических функций, конформно отображающих одну заданную область на другую. Описание практических приемов нахождения отображающих функций помощи интеграла Кристоффеля-Шварца. Характеристика теории функций комплексного переменного.
учебное пособие, добавлен 14.05.2013Основные понятия и утверждения иррациональных уравнений, базовые принципы их решения. Теоремы о равносильности преобразований. Примеры общих классов иррациональных уравнений. Разработка и пример решения системы упражнений на каждый класс уравнений.
курсовая работа, добавлен 05.05.2014- 111. Числовые ряды
Нахождение аппроксимирующих функций с помощью теории рядов. Достаточные признаки сходимости. Интегральный признак Коши, Лейбница и Даламбера. Теорема Абеля. Дифференцирование и интегрирование. Разложение основных элементарных функций в ряд Маклорена.
лекция, добавлен 18.10.2013 Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.
реферат, добавлен 30.11.2023Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
учебное пособие, добавлен 28.12.2013Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.
реферат, добавлен 27.12.2013Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.
презентация, добавлен 30.10.2013Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
методичка, добавлен 14.12.2016Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.
учебное пособие, добавлен 05.04.2011Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
контрольная работа, добавлен 10.05.2016Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
шпаргалка, добавлен 25.01.2016Множество чисел как упорядоченное множество бесконечных десятичных дробей. Изучение ограниченных и бесконечно малых последовательностей. Изучение первообразной функции и неопределенного интеграла. Дифференциальное исчисление функций многих переменных.
курс лекций, добавлен 11.05.2015Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.
статья, добавлен 26.05.2018Анализ правил дифференцирования. Производные основных элементарных функций. Правило Лопиталя и его применение к вычислению пределов. Суть свойств неопределенного интеграла. Способы непосредственного подсчета вероятности. Главные элементы комбинаторики.
шпаргалка, добавлен 07.11.2016