Криві другого порядку
Визначення лінії другого порядку, її види: коло, еліпс, парабола, гіпербола. Ексцентриситет еліпса, як відношення фокальних радіусів довільної точки еліпса до відстаней цієї точки до відповідних директрис. Рівняння параболи, ексцентриситет гіперболи.
Подобные документы
Поняття однорідного рівняння та функції, сутність однорідного диференціального рівняння. Задача про параболічний прожектор: мередіальний переріз поверхні обертання та заміна змінної розв’язання диференціального рівняння з відокремлюваними змінними.
лекция, добавлен 01.05.2014Методи усереднення задач Діріхле для нелінійних еліптичних рівнянь другого порядку в змінних областях. Умови збіжності послідовності розв'язків нелінійних задач в перфорованих областях. Гранична задача з додатковим членом, що має місткісний характер.
автореферат, добавлен 23.11.2013Основні поняття і визначення диференціальних рівнянь вищих порядків. Метод виключення (зведення нормальної системи до прикладу n-го порядку). Лінійні системи диференціальних рівнянь. Системи у симетричній формі. Однорідне і неоднорідне рівняння.
учебное пособие, добавлен 16.10.2014Способи вдосконалення методу Ейлера. Розгляд принципу побудови модифікованого методу Ейлера, його суть в обчисленні значень диференціального рівняння (ДР). Значення методу Рунге-Кутта для розв’язання ДР першого порядку, розв’язання задачі Коші для нього.
контрольная работа, добавлен 30.04.2018Аналіз методів отримання нелінійного рівняння Фоккера-Планка. Визначення еволюційних рівнянь для першого і другого статистичних моментів. Характеристика скейлінгових законів руху для системи вільних частинок і дослідження картини переходів в системі.
статья, добавлен 23.10.2010Опис підпростору розв’язків задачі Коші для неявного, виродженого рівняння вищого порядку, знаходження ознак коректності. Оцінка початкового моменту апроксимації розв’язків неявного рівняння вищого порядку лінійними комбінаціями елементарних розв’язків.
автореферат, добавлен 28.08.2014- 57. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язність першої крайової задачі, односторонньої крайової задачі та задачі Коші. Розв’язність задачі Діріхле, задачі з косою похідною та односторонньої крайової задачі для еліптичних рівнянь другого порядку з будь-якими степеневими особливостями.
автореферат, добавлен 28.08.2014 Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.
шпаргалка, добавлен 14.01.2010Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017- 60. Кривая линия
Определение и способы задания плоской кривой, их классификация и разновидности: парабола, гипербола, эллипс, трансцендентные. Свойства и характеристики кривых линий: обводы и касательные, точки и кривизна. Особенности проекций и подходы к их анализу.
реферат, добавлен 21.08.2017 Характеристика особливостей методів інтегрування лінійних диференціальних рівнянь 1-го порядку. Проведення аналізу диференціальних рівнянь в R-L контурі. Вивчення способу варіації довільної константи. Розгляд прикладу використання методу Бернуллі.
контрольная работа, добавлен 16.02.2014Нелінійна параболічна задача для рівняння парного порядку у циліндричній області. Операторні рівняння з оператором, які задовольняють умову. Топологічні характеристики відображення. Єдиність розв'язку досліджуваної задачі та його локальне існування.
автореферат, добавлен 20.04.2014Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.
контрольная работа, добавлен 23.04.2012- 64. Понятие параболы
Парабола как множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки. Расстояние между фокусом и директрисой параболы. Расстояние по формуле расстояния между двумя точками. Каноническое уравнение параболы.
презентация, добавлен 21.09.2013 Дослідження регулярних цілих вектор-функцій половинного порядку зростання та відповідних їм безумовних базисів гільбертових просторів. Розв’язання задачі інтерполяціі функціями з вагових класів цілих вектор-функцій половинного порядку зростання.
автореферат, добавлен 06.07.2014Общее уравнение и уравнение прямой, проходящей через две точки. Вычисление угла между прямыми. Условия параллельности и перпендикулярности прямых. Дифференционная функция с одной переменной. Понятие о вариационных рядах. Гипербола, парабола, их уравнение.
контрольная работа, добавлен 23.12.2010Необхідні та достатні умови подібності до самоспряженого або нормального оператора для деяких модельних індефінітних операторів Штурма-Ліувілля з сингулярним потенціалом функції Дірака. Спектральні властивості мінімального симетричного оператора L0.
автореферат, добавлен 27.08.2014Огляд проблеми подібності звичайних диференціальних операторів з індефінітною ваговою функцію до самоспряженого оператора. Дослідження спектральних властивостей мінімального симетричного оператора L0, пов’язаного з оператором струни М.Г. Крейна.
автореферат, добавлен 30.10.2015Поняття геометричного місця точок у просторі. Способи розташування прямих у просторі. Задача на порівняння кривих другого порядку і деяких поверхонь обертання як геометричних місць точок, що мають одну і ту ж властивість на площині і в просторі.
контрольная работа, добавлен 23.11.2017З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
статья, добавлен 25.08.2016Метод складання диференціального рівняння у частинних похідних, розв’язком якого має бути поверхня у просторі, що дозволить визначати відбивальні поверхні з точковими фокусами. Алгоритми розв’язання рівняння з метою визначення квазіеліпса на площині.
автореферат, добавлен 10.08.2014Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле, що залишають незмінним точковий спектр, повноту та мінімальність системи власних функцій. Дослідження умови єдиності розв’язків збурених задач.
автореферат, добавлен 28.09.2015Розробка чисельно-аналітичного методу А.М. Самойленка для оцінки існування та наближеної побудови розв'язків нелінійних систем диференціальних рівнянь. Аналіз можливих періодів розривних циклів лінійних автономних імпульсних систем другого порядку.
автореферат, добавлен 14.07.2015- 74. Про модифікацію узагальненого методу розв’язання інтегральних рівнянь типу Фредгольма другого роду
Визначення апріорної оцінки похибки методу. Побудова модифікації узагальненого методу розв’язання рівнянь. Описання інтегральних рівнянь типу Фредгольма. Розгляд питання про оцінку похибки наближеного розв’язання рівняння запропонованим методом.
статья, добавлен 30.01.2017 Розробка методу дискретного геометричного моделювання плоских обводів другого порядку гладкості. Геометрична схема згущення просторової дискретно представленої кривої. Одержання обводу із монотонною зміною кривини та постійним напрямком скруту.
статья, добавлен 28.10.2016