Определённый интеграл

Характеристика предела интегральной суммы функции, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю. Рассмотрение алгоритма вычисления определённого интеграла. Последствия замены переменной в интеграле.

Подобные документы

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Неравенства и теорема о среднем. Вычисление с помощью повторного интегрирования. Анализ и практика применения тройных интегралов для расчета координат.

    презентация, добавлен 17.09.2013

  • Характеристика основных свойств наибольшего общего делителя двух натуральных чисел. Особенность решения диофантова уравнения первой степени. Проведение исследования алгоритма Евклида в школьном курсе математики. Определение наименьшего общего кратного.

    дипломная работа, добавлен 23.11.2019

  • Первообразная функция, теорема о первообразных. Неопределенный интеграл, свойства, таблица. Замена переменной, интегрирование по частям. Интегрирование дробей, выражений, содержащих тригонометрические функции. Определенный интеграл, геометрический смысл.

    реферат, добавлен 12.03.2010

  • Определение числовой последовательности и ее предела. Свойства сходящихся последовательностей. Предел функции одной переменной. Основные правила вычисления пределов. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификации.

    шпаргалка, добавлен 07.09.2013

  • Нахождение производной как основная задача дифференциального исчисления. Первообразная функция на интервале оси. Рассмотрение свойств неопределенного интеграла. Методы интегрирования в математическом анализе. Подведение функции под дифференциал.

    лекция, добавлен 17.01.2014

  • Исследование преобразований интеграла и анализ его групповой структуры. Задача Л. Эйлера как одна из классических задач теории трансцендентных чисел. Проблема оценки интеграла, а также меры иррациональности значений дзета-функции Римана в целых точках.

    статья, добавлен 27.05.2018

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.

    задача, добавлен 22.04.2015

  • Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.

    лекция, добавлен 18.10.2013

  • Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.

    курсовая работа, добавлен 22.04.2011

  • Вычисление тройного интеграла в цилиндрической системе координат. Основные определения тройного интеграла. Теорема и свойства, замена переменных при ее доказательстве. Тройной интеграл в цилиндрической системе координат. Изменение порядка интегрирования.

    курсовая работа, добавлен 13.01.2015

  • Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.

    курсовая работа, добавлен 21.09.2015

  • Понятие и общая характеристика неопределенного интеграла, его основные свойства и функции. Сущность и особенности рациональной дроби, порядок и принципы ее интегрирования. Сходимость несобственных интегралов II рода. Изучение дифференциальных уравнений.

    лекция, добавлен 02.05.2012

  • Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.

    презентация, добавлен 17.09.2013

  • Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.

    курсовая работа, добавлен 14.06.2022

  • Производная как мгновенная скорость. Правила дифференцирования. Показательная и логарифмическая функции. Восстановление пути по скорости. Геометрический смысл интеграла и его применение для вычисления площадей и объемов. Радиоактивный распад, уравнение.

    учебное пособие, добавлен 29.09.2014

  • Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.

    реферат, добавлен 19.02.2014

  • Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.

    курсовая работа, добавлен 12.11.2011

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.

    курсовая работа, добавлен 27.11.2018

  • Исследование и сравнительное описание наиболее распространенных приближенных методов вычисления определенных интегралов: прямоугольников, трапеций и парабол. Принципы замены подынтегральной функции многочленом, совпадающим с ней в некоторых точках.

    контрольная работа, добавлен 07.06.2016

  • Методы поиска решений нелинейных уравнений, сущность метода Ньютона. Интерполяция функции с помощью полинома Лагранжа. Вычисление интеграла по формуле трапеций с тремя десятичными знаками, расчет интеграла по формуле Симпсона. Оптимизация функции.

    контрольная работа, добавлен 13.10.2014

  • История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.

    реферат, добавлен 19.10.2010

  • Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.

    лекция, добавлен 26.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.