О самопринадлежащих множествах как неподвижных точках

Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).

Подобные документы

  • Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.

    реферат, добавлен 15.11.2010

  • Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

    реферат, добавлен 08.10.2012

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Рассмотрение и анализ модели многокритериальной оптимизации по качественным критериям. Ознакомление с условием внешней устойчивости множества Парето оптимальных альтернатив. Характеристика замкнутого множества, как пересечения замкнутых множеств.

    статья, добавлен 02.11.2018

  • Признаки деформации эластичных тел. Процесс заклеивания узлов и зацеплений. Проектировка векторных полей на плоскости и двухмерных поверхностях. Рассмотрение гомоморфизма без неподвижных точек. Ознакомление со свойствами двухмерных поверхностей.

    учебное пособие, добавлен 28.12.2013

  • Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.

    контрольная работа, добавлен 25.12.2011

  • Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.

    статья, добавлен 15.02.2019

  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа, добавлен 29.03.2017

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Отношения, связывающие элементы множеств. Свойства бинарных отношений. Функциональные отношения. Отношения на заданном двухэлементном множестве. Выделение отношений эквивалентности и построение классов эквивалентности. Классификация отношений порядка.

    лабораторная работа, добавлен 17.09.2019

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.

    курсовая работа, добавлен 03.10.2016

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Разработка и анализ методики исследования неподвижных точек автономной системы дифференциальных уравнений для подтверждения гипотезы о существовании решения этой системы с хаотическими колебаниями. Определение параметров, управляющих ее поведением.

    статья, добавлен 31.03.2017

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа, добавлен 28.09.2011

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.

    контрольная работа, добавлен 30.06.2021

  • Понятие и сущность, математическое обоснование множеств, их классификация и типы, характеристика и свойства, основные способы задания. Общее описание и принципы реализации операций над множествами: объединение, пересечение, разность и дополнение.

    контрольная работа, добавлен 17.06.2015

  • Локальный релятивистский инвертор времени, расчет и обоснование его технологических показателей. Семантические основания гипердействительного, инфинитезимального анализа. Сечения числовых множеств и конденсация чисел. Множества отрицательной мощности.

    учебное пособие, добавлен 18.01.2015

  • Аксиома — утверждение, принимаемое без доказательства. Аксиомы принадлежности точек и прямых. Теоремы - утверждения геометрии, которые доказываются на основании аксиом и ранее доказанных утверждений. Аксиомы расположения точек на прямой и плоскости.

    презентация, добавлен 13.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.