Кратные интегралы

Решение задач на доказательство теоремы о среднем для двойного и тройного интеграла. Построение области интегрирования. Вычисление площади плоской фигуры, ограниченной заданными линиями, и объема тела, ограниченного определенными поверхностями.

Подобные документы

  • Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.

    методичка, добавлен 16.09.2017

  • Рассмотрение многомерных обобщений теоремы Абеля. Построение тройки тетраэдров по их двойственным графам. Вычисление смешанного объема суммы с помощью программы Wolfram. Доказательство неразрешимости группы монодромии системы и наличия транспозиции.

    контрольная работа, добавлен 26.07.2016

  • Тела вращения как тела, возникающие при вращении плоской фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости. Цилиндр и ее тело, заключенное между двумя кругами, расположенными в параллельных плоскостях и цилиндрической поверхностью.

    презентация, добавлен 25.05.2015

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.

    курсовая работа, добавлен 09.10.2014

  • Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.

    методичка, добавлен 28.10.2015

  • Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.

    учебное пособие, добавлен 24.08.2012

  • Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.

    курсовая работа, добавлен 18.03.2015

  • Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.

    методичка, добавлен 25.11.2013

  • Исследование геометрических приложений двойных, тройных, криволинейных и поверхностных интегралов. Вычисление объема любого пространственного тела. Изучение площади области, ограниченной замкнутой кривой. Изучение массы и статических моментов пластины.

    практическая работа, добавлен 12.06.2021

  • Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.

    учебное пособие, добавлен 22.10.2014

  • Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.

    презентация, добавлен 25.09.2017

  • История зарождения системы измерений. Становление геометрии как науки. Определение размера части плоскости, заключенной внутри плоской замкнутой фигуры. Исследование единиц измерения площади. Рассмотрение теорем о площадях фигур и их доказательство.

    реферат, добавлен 02.11.2015

  • Объемные тела, которые возникают при вращении некой плоской фигуры, которая, в свою очередь, ограничена кривой и вращается вокруг оси, лежащей в той же плоскости. Определение объёма и площади поверхности различных тел при помощи теорем Гульдина-Паппа.

    контрольная работа, добавлен 11.10.2015

  • Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).

    лабораторная работа, добавлен 25.11.2014

  • Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.

    реферат, добавлен 20.10.2014

  • Определенные и несобственные интегралы. Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Признаки сходимости и расходимости. Эталонные интегралы.

    реферат, добавлен 21.08.2008

  • Методика определения численного значения площади геометрической фигуры. Основные характеристики равновеликих объектов. Площадь треугольника как половина произведения его основания на высоту. Современная формулировка и доказательство теоремы Пифагора.

    презентация, добавлен 06.09.2014

  • Масса неоднородного тела. Тройной интеграл и его вычисление. Преобразование тройных интегралов. Декартовы, сферические и цилиндрические координаты. Установление связи между сферическими и декартовыми координатами. Практика применения тройных интегралов.

    реферат, добавлен 12.03.2010

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.

    учебное пособие, добавлен 08.09.2011

  • Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.

    контрольная работа, добавлен 23.12.2017

  • Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.

    презентация, добавлен 17.09.2013

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.

    контрольная работа, добавлен 14.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.