Практическое применение искусственных нейронных сетей в системах авторегулирования

Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

Подобные документы

  • Ассоциативная память на основе искусственной нейронной сети. Извлечение информации из ассоциативной памяти. Степень ортогональности и ее оценка при помощи Евклидова расстояния. Ключевые характеристики, определяющие качество пространственной группировки.

    статья, добавлен 29.06.2017

  • Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.

    статья, добавлен 05.09.2024

  • История создания нейрокомпьютеров, их преимущества, недостатки и практическое применение. Понятие нейронных сетей, их сущность, основные элементы, особенности формирования, виды, функции, задачи и назначение. Проблемы создания искусственного интеллекта.

    курсовая работа, добавлен 07.12.2009

  • Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.

    лабораторная работа, добавлен 14.12.2019

  • Знакомство со средой создания нейронных сетей. Сущность статической и динамической архитектуры. Основные сети каскадной корреляции. Искусственные нейронные сети и алгоритмы классификации. Разработка проектов создания комплекса лабораторных работ.

    дипломная работа, добавлен 04.07.2018

  • Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.

    лекция, добавлен 06.09.2017

  • История искусственных нейронных сетей. Модель формального нейрона Питтса и персептрон Розенблатта. Синапс как элементарная структура и функциональный узел между двумя нейронами. Примеры наиболее часто используемых преобразовательных функций Хопфилда.

    презентация, добавлен 25.06.2013

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".

    статья, добавлен 25.02.2019

  • Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.

    дипломная работа, добавлен 07.08.2018

  • MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.

    контрольная работа, добавлен 30.05.2016

  • Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.

    статья, добавлен 30.05.2017

  • Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.

    реферат, добавлен 22.03.2019

  • Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.

    доклад, добавлен 12.12.2012

  • Проблема моделирования объектов при помощи нейронных сетей. Проверка результатов полученной модели. Обмен между точностью и релевантностью. Архитектура и правила функционирования каждого слоя сети. Матрица входных данных для обучения нейро-нечеткой сети.

    статья, добавлен 27.01.2019

  • Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.

    курсовая работа, добавлен 26.06.2011

  • Ознакомление с методикой настройки пропорционально-интегрально-дифференцирующего регулятора. Исследование возможностей его применения для изменения динамических характеристик системы на основе использования пакета Simulink. Анализ разомкнутой системы.

    лабораторная работа, добавлен 30.05.2021

  • Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.

    курс лекций, добавлен 08.02.2013

  • Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.

    курсовая работа, добавлен 05.06.2011

  • Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.

    научная работа, добавлен 26.08.2010

  • Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.

    курсовая работа, добавлен 30.11.2009

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.

    статья, добавлен 08.02.2013

  • Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.

    статья, добавлен 29.09.2012

  • Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.

    статья, добавлен 06.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.