Введение в методы Монте-Карло

Статистическое моделирование как научное направление, области его применения. Методы Монте-Карло: анализ общей схемы, достоинства, недостатки и примеры применения. Случайные числа, генераторы случайных и псевдослучайных чисел. Метод Hit-Or-Miss.

Подобные документы

  • Застосування квадратурних формул з вагою до інтеграла з нескінченними межами і розривною функцією. Метод Канторовича для виділення особливостей. Наближене обчислення кратних інтегралів. Метод статистичних випробувань Монте-Карло, Люстерника і Діткіна.

    курсовая работа, добавлен 22.01.2013

  • Планируемый ЛП-поиск как алгоритм, объединяющий стохастические модели, свойственные методу Монте-Карло и планирование вычислительного эксперимента. Методика проведения однофакторного дисперсионного анализа по всем параметрам для каждого критерия.

    статья, добавлен 25.08.2020

  • Биография Жоржа Луи Бюффона как французского натуралиста, биолога, математика, естествоиспытателя и писателя, обзор его знаменитых трудов. Опыт Бюффона. Особенности доказательства формулы, лежащей в основе теоретического фундамента метода Монте-Карло.

    реферат, добавлен 27.04.2022

  • Построение схемы усовершенствованного 16-разрядного генератора псевдослучайных чисел, в котором число 0 включено в последовательность случайных чисел посредством выбора четырех сдвиговых регистров влево, выходы которого выдают число на выходную шину.

    контрольная работа, добавлен 24.06.2010

  • Область використання і сучасний стан обчислювальних методів типу Монте-Карло, перспективи їх подальшого розвитку. Аналіз точності рандомізованих розрахунків у залежності від показника ортотропії, від моделі теплопровідності в ортотропному середовищі.

    автореферат, добавлен 28.09.2015

  • Область використання і сучасний стан обчислювальних методів типу Монте-Карло, перспективи їх подальшого розвитку. Ключові ідеї методу барицентричного усереднення. Аналіз та оцінка точності рандомізованих розрахунків у залежності від показника ортотропії.

    автореферат, добавлен 26.02.2015

  • Закономерности случайных явлений. Методы количественной оценки влияния случайных факторов на различные явления. Операции над событиями и их свойства. Дискретные и непрерывные случайные величины. Ряд распределения вероятности дискретной случайной величины.

    курс лекций, добавлен 16.05.2016

  • Анализ генераторов псевдослучайных чисел, построенных на точках эллиптической кривой. Анализ алгоритмов построения неприводимых многочленов и исследование свойств его корней. Исследование преимущества в скорости для алгоритма псевдослучайных чисел.

    статья, добавлен 30.05.2017

  • Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.

    практическая работа, добавлен 02.06.2017

  • Для заданной выборки равномерного распределения построение ее вариационного ряда, эмпирической функции, гистограммы и полигона частот. Расчет выборочного среднего, дисперсии, моды и медианы. Оценка методом Монте-Карло интеграла с заданной ошибкой.

    контрольная работа, добавлен 10.11.2017

  • Характеристика основных различий между номинальными и реальными уровнями значимости на примере непараметрических критериев проверки однородности двух независимых выборок. Проведение исследования мощности статистических критериев методом Монте-Карло.

    статья, добавлен 22.05.2017

  • Классификация приближенных способов преобразования случайных чисел в практике моделирования систем. Понятие универсального способа, выполнения операции масштабирования. Посредственность случайных чисел методом Пуассона. Моделирование дискретных векторов.

    лекция, добавлен 18.10.2013

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.

    реферат, добавлен 30.10.2010

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Методы обработки результатов опытов и получение из них необходимых данных. Понятие и обозначение случайных величин. Определение суммарной вероятности возможных значений случайной величины, ее математическое ожидание. Функция распределения вероятностей.

    курсовая работа, добавлен 12.11.2012

  • Генерирование последовательности равномерно распределенных случайных чисел, их характеристика и построение гистограммы. Расчёт среднеквадратического отклонения, математического ожидания и дисперсии полученных данных с использованием функций SciLab.

    лабораторная работа, добавлен 15.03.2014

  • Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.

    курсовая работа, добавлен 12.11.2018

  • Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.

    курсовая работа, добавлен 25.01.2017

  • История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.

    научная работа, добавлен 30.04.2014

  • Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

    контрольная работа, добавлен 02.02.2010

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Изучение применения принципов случайных последовательностей. Исследование циклов генератора линейных конгруэнтных чисел, преобразование их псевдослучайной последовательности в равновероятно распределенную путем проведения процедуры рандомизации.

    статья, добавлен 06.01.2010

  • Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.

    курсовая работа, добавлен 04.08.2012

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.