Векторный анализ

Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.

Подобные документы

  • Арифметические операции над функциями, имеющими предел. Доказательство непрерывности функции в точке. Переход к пределу в неравенствах. Свойства непрерывной математической функции. Изучение классификации точек разрыва в арифметических неравенствах.

    презентация, добавлен 16.10.2014

  • Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.

    шпаргалка, добавлен 11.04.2012

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Установление геометрического вида поверхности, получение гипербол и эллипсов в сечениях плоскости. Элементы образующие математическое множество, возможные операции над этими объектами. Понятия гиперболического параболоида, двуполостного гиперболоида.

    лекция, добавлен 26.01.2014

  • Определение предела числовой последовательности. Расчет суммы числового ряда. Частичные суммы и закономерность их вычисления. Исследование ряда на сходимость. Условие непрерывности функции и односторонние пределы. Вычисление производной в любой точке.

    контрольная работа, добавлен 24.01.2014

  • Объемные тела, которые возникают при вращении некой плоской фигуры, которая, в свою очередь, ограничена кривой и вращается вокруг оси, лежащей в той же плоскости. Определение объёма и площади поверхности различных тел при помощи теорем Гульдина-Паппа.

    контрольная работа, добавлен 11.10.2015

  • Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.

    лекция, добавлен 18.10.2013

  • Оценка геометрических образов (прямые линии, кривые линии, плоскости, поверхности) с помощью многомерности параметров точечно-эпюрных номограмм. Закономерности, применяемые в начертательной геометрии. Аргументальные оси четвёртой октанты. Проекции точек.

    статья, добавлен 30.04.2018

  • Зависимость типа кривой от параметра с помощью инвариантов: нахождение фокусов, директрис, эксцентриситета и асимптот. Исследование формы поверхности методом сечений и построение полученного. Построение поверхности в канонической системе координат.

    курсовая работа, добавлен 19.11.2010

  • Образование винтовой линии. Пять различных положений плоскости, которая содержит движущуюся точку. Скольжение одной винтовой поверхности по другой. Развертка поверхности цилиндра с нанесённой винтовой линией. Построение синусоиды и деление окружности.

    реферат, добавлен 16.12.2014

  • Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.

    реферат, добавлен 21.06.2016

  • Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.

    лекция, добавлен 17.01.2014

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Определение определённого интеграла. Длина дуги кривой, прямоугольные координаты. Теорема Лагранжа о конечном приращении функции. Способы нахождения площади криволинейной трапеции. Площадь поверхности вращения. Строгое изложение теории интеграла О. Коши.

    курсовая работа, добавлен 23.04.2011

  • Рассмотрение видов и свойств цилиндра, свойств эллипса как его сечения Приведение формул для определения объема и площади поверхности прямого цилиндра. Расчет площади боковой поверхности пирамиды, помещенной в цилиндр и радиуса основания цилиндра.

    презентация, добавлен 09.10.2014

  • Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.

    курсовая работа, добавлен 21.09.2015

  • Определение цилиндрической поверхности или цилиндра как множества точек пространства, лежащих на прямых, параллельных данной прямой и пересекающих данную плоскую линию. Понятие конической поверхности и характеристика гиперболического параболоида.

    контрольная работа, добавлен 09.03.2015

  • Пирамида, ее основные виды. Свойства четырехугольной пирамиды, тетраэдра, пятиугольной и шестиугольной пирамид. Понятие правильной пирамиды. Свойства усеченной пирамиды. Определение площади боковой поверхности пирамиды и полной поверхности пирамиды.

    презентация, добавлен 23.10.2016

  • Общая теория кривых второго порядка. Определение зависимости типа кривой от параметра с помощью инвариантов. Определение эксцентриситета, фокусов, директрис, асимптот данной кривой второго порядка. Построение и исследование поверхности второго порядка.

    курсовая работа, добавлен 22.04.2011

  • Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.

    лекция, добавлен 23.08.2016

  • Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.

    презентация, добавлен 19.11.2017

  • Параллелепипед - призма, основаниями которой служат параллелограммы. Основные свойства прямого и прямоугольного параллелепипедов. Объем куба. Призма, ее основания, боковые поверхности, вершины и боковые ребра. Площадь боковой поверхности пирамиды.

    реферат, добавлен 21.10.2011

  • Предел последовательности. Необходимое условие сходимости бесконечной числовой последовательности. Вычисление предела последовательности. Бесконечно малые последовательности. Связь между бесконечно малыми и сходящимися последовательностями, их свойство.

    контрольная работа, добавлен 03.03.2012

  • Использование традиционной формы вида усеченной пирамиды в строительстве древнеегипетских пирамид. Правила вычисления и построения правильной усеченной пирамиды, а также расчет площади через полупроизведение суммы периметров оснований и апофемы.

    реферат, добавлен 12.03.2014

  • Программный алгоритм построения луча, отраженного от поверхности общего вида. Вычисление координат точки пересечения луча с поверхностью с заданной точностью. Расчет значений свободных членов системы. Определение коэффициентов уравнения лучевой плоскости.

    лекция, добавлен 26.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.