Практическое применение искусственных нейронных сетей в задачах аппроксимации
Задача аппроксимации ряда динамики, построение функции по конечному набору точек. Особенности минимаксной функции. Фрагмент программы создания и адаптации линейной сети. Результат аппроксимации данных. Традиционные методы сглаживания ряда динамики.
Подобные документы
Решение задачи интерполяции и аппроксимации функции. Способы решения дифференциального уравнения. Методы обработки звуковых и графических файлов. Особенности решения системы линейных уравнений методом Гаусса. Разложение сигнала в комплексный ряд Фурье.
курсовая работа, добавлен 21.02.2019Вычисление и вывод таблицы значений функции с использованием ряда Тейлора. Разработка программы по вычислению заданной функции. Отражение в таблице значения аргумента и количество просуммированных членов ряда. Реализация проверки корректности ввода.
лабораторная работа, добавлен 23.06.2024Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Описание и общее исследование аппроксимации 3-й краевой задачи схемами повышенного порядка точности. Получение и анализ аппроксимации оператора конвективно-диффузионного переноса разностной схемой, при том, что она обладает 4-ым порядком погрешности.
статья, добавлен 28.07.2017Понятие и задачи аппроксимации и ее применение для использования эмпирических результатов. Постановка задачи интерполяции, кубический интерполяционный сплайн. Случаи глобальной интерполяции и этапы построения ее формул. Выполнение аппроксимации MathCAD.
курсовая работа, добавлен 13.10.2014Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Применение процедур локальной аппроксимации для решения задачи классификации траекторий на основе критериев точечного сходства. Представление рядов в виде матричных наборов данных и применение алгоритма нечетких средних для их дальнейшей кластеризации.
статья, добавлен 27.02.2019Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Сфера применения искусственных нейронных сетей (ИНС). Использование ИНС в прогнозировании временных рядов. Возможности применения ИНС для моделирования демографической динамики. Прогнозирование динамики численности населения, смертности и рождаемости.
статья, добавлен 16.07.2018Проекционный алгоритм стохастической аппроксимации, позволяющий выполнять автоматизированное управление процессами в распределенной среде. Семейство графиков функциональных зависимостей величины текущих средних потерь от шага алгоритма, адаптивный выбор.
статья, добавлен 29.08.2016Развитие и закрепление навыков работы с табличным процессором Microsoft Excel, применение их для решения математических задач с помощью современной электронной вычислительной техники. Разработка алгоритма аппроксимации функции в графической форме.
курсовая работа, добавлен 14.12.2014Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.
дипломная работа, добавлен 01.12.2019Вейвлетные преобразования: дискретные, непрерывные, обратные, стационарные, одномерные и двумерные, их функции, задание граничных условий. Декомпозиция и реконструкция сигнала. Многоуровневое вейвлет-разложение. Функции коэффициентов аппроксимации.
лекция, добавлен 15.11.2018Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Информационные технологии для решения прикладных задач на примере построения аппроксимации функции методом наименьших квадратов. Теория корреляции и линеаризация экспоненциальной зависимости. Построение графиков в Excel и использование функции ЛИНЕЙН.
курсовая работа, добавлен 24.02.2011Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Графическое изображение зависимости между величинами. Анализ зависимости размера пошлины от длины танкера и прогнозирование значений. Сравнение графиков подобранной зависимости и имеющихся данных. Прогноз с использованием линейной аппроксимации.
курсовая работа, добавлен 24.03.2014Байесова регуляризация обучения и интерполяция функций без кросс-валидации. Оптимизация кластерной модели. Нейросетевые аппроксимации плотности распределения вероятности в задачах информационного моделирования. Фракталы, аттракторы, нейронные сети.
курс лекций, добавлен 08.02.2013Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Система шифрования на основе искусственных нейронных сетей типа GRNN. Нейронная сеть как подходящий выбор для функциональных форм, используемых для операций шифрования и дешифрования. Построение системы с использованием постоянно изменяющегося ключа.
статья, добавлен 30.04.2018- 50. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018