Практическое применение искусственных нейронных сетей в задачах аппроксимации
Задача аппроксимации ряда динамики, построение функции по конечному набору точек. Особенности минимаксной функции. Фрагмент программы создания и адаптации линейной сети. Результат аппроксимации данных. Традиционные методы сглаживания ряда динамики.
Подобные документы
Решение задачи интерполяции и аппроксимации функции. Способы решения дифференциального уравнения. Методы обработки звуковых и графических файлов. Особенности решения системы линейных уравнений методом Гаусса. Разложение сигнала в комплексный ряд Фурье.
курсовая работа, добавлен 21.02.2019Вычисление и вывод таблицы значений функции с использованием ряда Тейлора. Разработка программы по вычислению заданной функции. Отражение в таблице значения аргумента и количество просуммированных членов ряда. Реализация проверки корректности ввода.
лабораторная работа, добавлен 23.06.2024Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Описание и общее исследование аппроксимации 3-й краевой задачи схемами повышенного порядка точности. Получение и анализ аппроксимации оператора конвективно-диффузионного переноса разностной схемой, при том, что она обладает 4-ым порядком погрешности.
статья, добавлен 28.07.2017Понятие и задачи аппроксимации и ее применение для использования эмпирических результатов. Постановка задачи интерполяции, кубический интерполяционный сплайн. Случаи глобальной интерполяции и этапы построения ее формул. Выполнение аппроксимации MathCAD.
курсовая работа, добавлен 13.10.2014Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Применение процедур локальной аппроксимации для решения задачи классификации траекторий на основе критериев точечного сходства. Представление рядов в виде матричных наборов данных и применение алгоритма нечетких средних для их дальнейшей кластеризации.
статья, добавлен 27.02.2019Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.
статья, добавлен 17.07.2013Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Сфера применения искусственных нейронных сетей (ИНС). Использование ИНС в прогнозировании временных рядов. Возможности применения ИНС для моделирования демографической динамики. Прогнозирование динамики численности населения, смертности и рождаемости.
статья, добавлен 16.07.2018Проекционный алгоритм стохастической аппроксимации, позволяющий выполнять автоматизированное управление процессами в распределенной среде. Семейство графиков функциональных зависимостей величины текущих средних потерь от шага алгоритма, адаптивный выбор.
статья, добавлен 29.08.2016Развитие и закрепление навыков работы с табличным процессором Microsoft Excel, применение их для решения математических задач с помощью современной электронной вычислительной техники. Разработка алгоритма аппроксимации функции в графической форме.
курсовая работа, добавлен 14.12.2014Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.
дипломная работа, добавлен 01.12.2019Вейвлетные преобразования: дискретные, непрерывные, обратные, стационарные, одномерные и двумерные, их функции, задание граничных условий. Декомпозиция и реконструкция сигнала. Многоуровневое вейвлет-разложение. Функции коэффициентов аппроксимации.
лекция, добавлен 15.11.2018Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Информационные технологии для решения прикладных задач на примере построения аппроксимации функции методом наименьших квадратов. Теория корреляции и линеаризация экспоненциальной зависимости. Построение графиков в Excel и использование функции ЛИНЕЙН.
курсовая работа, добавлен 24.02.2011Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Графическое изображение зависимости между величинами. Анализ зависимости размера пошлины от длины танкера и прогнозирование значений. Сравнение графиков подобранной зависимости и имеющихся данных. Прогноз с использованием линейной аппроксимации.
курсовая работа, добавлен 24.03.2014Байесова регуляризация обучения и интерполяция функций без кросс-валидации. Оптимизация кластерной модели. Нейросетевые аппроксимации плотности распределения вероятности в задачах информационного моделирования. Фракталы, аттракторы, нейронные сети.
курс лекций, добавлен 08.02.2013Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012- 49. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Система шифрования на основе искусственных нейронных сетей типа GRNN. Нейронная сеть как подходящий выбор для функциональных форм, используемых для операций шифрования и дешифрования. Построение системы с использованием постоянно изменяющегося ключа.
статья, добавлен 30.04.2018