Комплексные числа

Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.

Подобные документы

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Основное свойство дроби. Умножение и деление десятичных дробей. Обозначение множества рациональных чисел. Сокращение обыкновенных дробей. Сложение и вычитание десятичных дробей. Десятичное число как удобная форма записи дроби с указанными знаменателями.

    реферат, добавлен 27.09.2009

  • История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.

    научная работа, добавлен 30.04.2014

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • Двоичная система счисления: основные сведения и понятия. Представление двоичных чисел и перевод их в десятичные. Преобразование десятичных чисел в двоичные. Арифметические действия над двоичными числами: сложение, вычитание, умножение, деление.

    реферат, добавлен 21.08.2008

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.

    лекция, добавлен 08.08.2014

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • История возникновения обозначений десятичных и обыкновенных дробей в разных странах. Правила математических действий над десятичными дробями (сложение; вычитание; умножение на натуральное число; деление на натуральное число и на десятичную дробь).

    реферат, добавлен 06.03.2010

  • Решение уравнения методом хорд и касательных. Сужение отрезка изоляции корня методом проб. Вычисление комплексных корней уравнения. Построение корней на комплексной плоскости. Запись корней в алгебраической, тригонометрической и показательной формах.

    контрольная работа, добавлен 21.10.2017

  • Особенности записи обыкновенных дробей в древнем Египте. Сложение и вычитание обыкновенных дробей с разными знаменателями. Приведение дробей к одинаковому знаменателю, используя основное свойство дроби. Изучение правил сложения и вычитания дробей.

    презентация, добавлен 08.11.2015

  • История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.

    курсовая работа, добавлен 22.04.2011

  • Определение понятий сложения, вычитания и дробных чисел (со знаменателем и неправильные дроби). Методика формирования умений преобразовать в неправильную дробь и различать рациональное число от иррационального. Примеры задач на закрепление материала.

    конспект урока, добавлен 04.06.2014

  • Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.

    контрольная работа, добавлен 21.05.2014

  • Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.

    реферат, добавлен 06.03.2010

  • Выделение из предложенного множества подмножества и нахождение числа элементов в дополнении этого подмножества. Понятие разности целых неотрицательных чисел. Связь между действиями вычитания и сложения. Принцип нахождения неизвестного слагаемого.

    контрольная работа, добавлен 26.04.2015

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.

    курс лекций, добавлен 02.06.2015

  • Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

    презентация, добавлен 23.10.2020

  • Комплексные числа, история открытия. Расширение множества вещественных чисел, образование алгебраически замкнутого поля. Применение КЧ в исследованиях, возможность удобно формулировать математические модели физики, квантовой механики, естественных наук.

    реферат, добавлен 07.09.2010

  • Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.

    курсовая работа, добавлен 03.12.2013

  • Обучение школьников умению пользоваться приемами сложения и вычитания, умению решать и составлять образовательные задачи. Решение числовых выражений и применение арифметических действий на уроке математики. Творческое проявление и добывание знаний.

    конспект урока, добавлен 19.05.2015

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.