Дискретная математика. Численные методы

Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.

Подобные документы

  • Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.

    курсовая работа, добавлен 28.06.2012

  • Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.

    реферат, добавлен 15.11.2010

  • Описание метода Гаусса. Рассмотрение алгоритма на примере системы уравнений. Необходимое и достаточное условие применимости метода. Анализ прямого и обратного хода, построение схемы единственного деления. Контроль и точность вычислений в уравнениях.

    реферат, добавлен 31.05.2009

  • Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.

    курсовая работа, добавлен 09.02.2019

  • Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.

    курсовая работа, добавлен 18.10.2013

  • Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.

    книга, добавлен 06.05.2013

  • Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.

    творческая работа, добавлен 26.06.2011

  • Рассмотрение и характеристика сущности и основных видов текстовых задач. Решение текстовых задач методом составления уравнений. Изучение нестандартных задач в школьном курсе математики. Ознакомление с методикой обучения решения "аномальных" задач.

    дипломная работа, добавлен 18.07.2014

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

  • Систематизация знаний о системах линейных уравнений. Метод  Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.

    презентация, добавлен 17.05.2023

  • Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.

    контрольная работа, добавлен 07.05.2009

  • Формирование умений и навыков решения текстовых задач, применения математики. Составление уравнений, связывающих величины и переменные, математической модели, которая представляет собой уравнение. Решение системы уравнений наиболее рациональным способом.

    статья, добавлен 15.03.2019

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Связь в исследованиях Гаусса между теоретической и прикладной математикой. Первое сочинение Гаусса по теории чисел и высшей алгебре. Решение проблемы определения орбит малых планет и исследование их возмущений. Исследования по теоретической физике.

    реферат, добавлен 15.03.2015

  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат, добавлен 07.11.2015

  • Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.

    контрольная работа, добавлен 06.09.2008

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Рассмотрение решений систем линейных алгебраических уравнений. Описание численных методов нелинейных уравнений, интерполяция и приближение функции. Краевые задачи, примеры расчетов и способов решения. Изучение метода обратной интерации, его характеристика

    курс лекций, добавлен 26.04.2014

  • Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).

    реферат, добавлен 01.11.2019

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.

    курсовая работа, добавлен 28.01.2012

  • Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.

    курс лекций, добавлен 19.09.2015

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.

    контрольная работа, добавлен 03.07.2012

  • Решение системы линейных алгебраических уравнений с тремя неизвестными методом Гаусса. Определение максимального значения целевой функции F(X)=-2x1+6x2. Поиск оптимального решения производственной задачи повышения спроса на выпускаемое фирмой изделие.

    контрольная работа, добавлен 05.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.