Теория графов

Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

Подобные документы

  • Основные понятия и определения теории графов. Представление графов с помощью матриц. Задача о максимальном потоке. Алгоритм решения задачи о максимальном потоке. Графы со многими источниками и стоками. Автоматизация поиска максимальных потоков в сетях.

    дипломная работа, добавлен 27.02.2020

  • Математическое моделирование задач электроэнергетики с помощью аппарата линейной алгебры, теории графов. Расчёт установившихся режимов электрических систем, не содержащих и содержащих контур. Вероятностно–статистические методы в задачах электроснабжения.

    курсовая работа, добавлен 13.11.2014

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.

    курсовая работа, добавлен 04.12.2023

  • Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.

    реферат, добавлен 14.12.2015

  • Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.

    методичка, добавлен 18.06.2013

  • Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.

    контрольная работа, добавлен 07.01.2016

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.

    курсовая работа, добавлен 20.01.2016

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.

    курсовая работа, добавлен 30.03.2015

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Исследование помеченных связных графов с заданным числом вершин и точек сочленения. Выведение формулы для энумератора разреженных гомеоморфно несводимых графов с заданным цикломатическим числом. Определение их асимптотики и интегральных представлений.

    автореферат, добавлен 02.03.2018

  • Проектирование информационных систем на основе графовых моделей. Анализ связей между элементами и множествами модели ИС в аспекте применения инвариантов теории графов. Использование соответствия Галуа при анализе системных связей информационных моделей.

    статья, добавлен 24.07.2018

  • Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.

    книга, добавлен 28.12.2013

  • Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.

    лекция, добавлен 18.10.2013

  • Развитие теории графов, их применение в различных отраслях научного знания. Понятие, определение и изображение графа, системы связей между объектами. Описание структуры графов. Разработка программы для определения сильных компонент графа, баз и антибаз.

    курсовая работа, добавлен 24.04.2011

  • Интегральные представления и асимптотика числа помеченных связных разреженных графов. Некоторые необходимые условия хроматичности многочлена. Метод сжатия-разжатия для перечисления графов. Упрощение некоторых формул для числа карт на поверхностях.

    автореферат, добавлен 17.12.2017

  • Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.

    учебное пособие, добавлен 13.01.2015

  • Рассмотрение применения дискретной математики в информатике. Применение теории графов в экономических задачах. Определение жадного алгоритма, решение задачи о максимальной загруженности линий. Описание алгоритма Дейкстра. Решение задачи Коммивояжера.

    реферат, добавлен 07.10.2014

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.

    контрольная работа, добавлен 29.01.2014

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.

    лекция, добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.