Трикроковий ітераційно-різницевий метод мінімізації функцій з кубічним порядком збіжності
Використання ідеї трикрокових алгоритмів, побудова нового варіанту трикрокового ітераційно-різницевого методу розв’язування задач безумовної мінімізації з кубічним порядком збіжності. Ефективність і можливість застосування запропонованого алгоритму.
Подобные документы
Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014Розв’язання задачі опуклого програмування. Використання методу січних площин. Знаходження опуклих ліпшіцевих функцій рівномірної апроксимації півнеперервного зверху компактнозначного відображення скінченновимірним підпростором неперервних відображень.
статья, добавлен 25.08.2016Розвиток теорії систем лінійних та нелінійних випадкових рівнянь над полем GF(3). Умови збіжності до нуля ймовірності існування розв'язків системи випадкових рівнянь з n невідомими над полем GF(3) в заданій множині векторів при умові, що n зростає.
автореферат, добавлен 28.09.2015- 54. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Дослідження основних умов збіжності бакстерівських сум випадкових процесів і полів та їх застосування для оцінювання параметрів кореляційних функцій. Детермінована стала послідовності білінійних форм. Вивчення загального виду гауссових випадкових полів.
автореферат, добавлен 30.10.2015 Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.
автореферат, добавлен 14.09.2014Принципи підсумовування розбіжних степеневих рядів за допомогою класичного методу розв’язання комплексу лінійних алгебраїчних рівнянь. Обґрунтування доцільності використання оператора усереднення з ядерною функцією Гаусса за межею круга збіжності.
статья, добавлен 22.03.2016Розгляд поведінки власних значень та власних функцій. Вивчення характеру збіжності власних функцій задачі Діріхле для лінійного рівняння другого порядку в послідовності областей з дрібнозернистою межею до відповідних власних функцій граничної задачі.
автореферат, добавлен 24.06.2014Методика розв'язування задач з логічним навантаженням, їх значення в навчальному процесі та в розвитку мислення. Приклади нестандартних задач із логічною складовою для школярів молодших класів та аналіз проблем, які виникають при розв’язанні цих завдань.
реферат, добавлен 06.11.2015Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015- 60. Нелокальні крайові задачі для рівнянь з частинними похідними та диференціально-операторних рівнянь
Вибір функціональних просторів для кожної із поставлених нелокальних задач. Встановлення умов однозначної розв’язності нелокальних задач для рівнянь і систем зі сталими та змінними коефіцієнтами. Обгрунтування методу мінімізації у гільбертових просторах.
автореферат, добавлен 30.07.2014 З’ясування необхідних і достатніх умов у мерсерових і тауберових теоремах, їх доведення для банаховозначних функцій. Розгляд статистичної збіжності та обмеженості послідовностей. Застосування методів Гельдера і Чезаро на лінійному топологічного простору.
автореферат, добавлен 27.07.2014Задачі геометрично нелінійного деформування оболонок з урахуванням обтиску нормалі на базі шестимодального варіанту теорії оболонок Тимошенка-Міндліна та формулювання відповідних задач. Умови стійкості та оцінок швидкості збіжності побудованих схем.
автореферат, добавлен 23.11.2013Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Аналіз апроксимативності та основної лінійної незалежності кусково-степеневих базисних функцій. Проведення апріорного аналізу похибки степеневих апроксимацій. Доведення збіжності степеневих апроксимацій за різних способів вибору параметра апроксимації.
статья, добавлен 30.01.2017Розв'язання задач на знаходження невідомих сторін прямокутного трикутника. Формування в учнів алгоритмічного підходу до розв'язування трикутників і спрощення процесу рішення багатьох геометричних задач. Повторення властивостей рівнобічної трапеції.
конспект урока, добавлен 14.09.2018Методи усереднення задач Діріхле для нелінійних еліптичних рівнянь другого порядку в змінних областях. Умови збіжності послідовності розв'язків нелінійних задач в перфорованих областях. Гранична задача з додатковим членом, що має місткісний характер.
автореферат, добавлен 23.11.2013Розробка геометричного алгоритму формування точкових каркасів квазіканалових поверхонь. Дослідження точності дискретного представлення плоских кривих із заданими диференціально-геометричними характеристиками і збіжності алгоритмів їх формування.
автореферат, добавлен 12.07.2014Розвиток обчислювальної техніки. Вивчення проблеми формування, фокусування і транспортування пучків заряджених частинок з великим просторовим зарядом. Проектування фізичних приладів. Будова чисельного алгоритму на основі методу інтегральних рівнянь.
автореферат, добавлен 28.07.2014Апроксимація на вертикальних прямих ряду Діріхле з нульовою абсцисою абсолютної збіжності, швидкість збіжності часткових сум. Аналітичні функції з невід'ємними тейлоровими коефіцієнтами. Швидкість прямування до нулів сум тейлорового розвинення функції.
автореферат, добавлен 28.08.2014Розглянуто особливості використання генетичного алгоритму (ГА) для розв’язання оптимізаційних задач. Наведено класифікацію оптимізаційних задач. Детально описано структурні елементи генетичного алгоритму та їх роль для розв’язання задачі комівояжера.
статья, добавлен 19.03.2024Поняття інверсії на площині та її властивості. Аналітичне задання інверсії. Характеристика видів інверсора як механізму, який здійснює побудову інверсних фігур. Застосування методу інверсії до розв'язування геометричних задач на побудову та доведення.
курсовая работа, добавлен 20.03.2015Дослідження асимптотичних властивостей розв’язків істотно нелінійних диференціальних рівнянь другого порядку з нелінійностями. Розробка асимптотичних зображень для підмножин класу розв’язків. Дослідження розв’язків різницевого рівняння Емдена-Фаулера.
автореферат, добавлен 14.08.2015Розробка оптимальних чисельних методів наближеного розв’язування жорстко некоректних задач. Розв'язання інтегральних рівнянь Фредгольма II роду з коефіцієнтами соболєвського типу гладкості за допомогою використання комбінації тіхоновської регуляризації.
автореферат, добавлен 20.07.2015Особливості навчальної програми вивчення рівнянь та нерівностей в школі, методика їх розв'язування. Розв'язування типових вправ з використанням теореми Вієта. Вивчення формули коренів квадратного рівняння. Математичний розрахунок дискримінанти та кореня.
разработка урока, добавлен 09.10.2018Знаходження умов на коефіцієнти кратних тригонометричних рядів, при виконанні яких ці ряди будуть рядами Фур'є інтегровних функцій. Встановлення оцінок інтегралів від модулів функцій. Знаходження умов збіжності в середньому кратних рядів Фур'є.
автореферат, добавлен 14.09.2015