Нейронные сети: история развития и перспективы применения

Вклад исследований Уоррена Мак-Каллока и Уолтера Питтса в развитие теории искусственных нейронных сетей. Специфические особенности устройства нейросинаптического процессора, построенного на базе комплементарной структуры металл-оксид-полупроводника.

Подобные документы

  • Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.

    статья, добавлен 29.06.2017

  • Изучение типологии нейронных сетей. Основные отличия от машин с архитектурой фон Неймана. Оценка процессов, протекающих в мозге человека. Разработка демонстрационной версии программы Neural Network Wizard, созданной на основе нейронной сети Кохонена.

    реферат, добавлен 13.04.2014

  • Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).

    курсовая работа, добавлен 04.04.2009

  • Методы интеллектуального анализа данных, основанных на применении искусственных нейронных сетей, их ключевая особенность. Понятие репрезентативности исходных данных. Формирование обучающей выборки и оценка достоверности данных таблиц базы данных.

    статья, добавлен 30.05.2017

  • Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.

    курсовая работа, добавлен 05.06.2011

  • Рассмотрение нейрокомпьютера как вычислительной системы с архитектурой MSIMD. Базовые архитектуры нейронных сетей. Правило коррекции по ошибке, обучение Больцмана и правило Хебба. Особенности программирования средств аппаратной поддержки нейровычислений.

    реферат, добавлен 02.03.2012

  • Сущность и устройство искусственных нейтронных сетей, их общая характеристика, назначение, принцип работы и составляющие базовые нелинейные элементы. Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе при помощи системы Simulink.

    контрольная работа, добавлен 12.12.2012

  • Анализ процесса выбора оптимальной архитектуры нейронной сети, которая способна наиболее эффективно определять тональность сообщений на интернет-форумах. Рассмотрение применения искусственных нейронных сетей для решения социально значимых проблем.

    статья, добавлен 14.04.2022

  • Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.

    учебное пособие, добавлен 09.09.2012

  • Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.

    дипломная работа, добавлен 01.12.2019

  • Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.

    методичка, добавлен 26.11.2015

  • Нейронные сети - мощный и гибкий механизм прогнозирования. Особенности разработки прогнозирующих систем, основанных на анализе исторических данных. Методы работы алгоритмов в условиях неопределенности. Оценка точности предсказания и быстродействия.

    статья, добавлен 25.02.2019

  • Основные преимущества использования нейронных сетей при обучении автоматизированному переводу. Описание общей схемы и принципа работы нейронной сети, применение данной технологии в системе NMTS. Характеристика технологий автоматического перевода.

    статья, добавлен 28.01.2019

  • История развития компьютерных сетей, направления повышения эффективности их использования. Достоинства и недостатки первых сетей, цели их создания. Классификация и особенности главных видов сетей. Топология и перспективы развития компьютерных сетей.

    дипломная работа, добавлен 23.06.2012

  • Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.

    статья, добавлен 23.01.2014

  • Роль сети Интернет в жизни современного человека. Теория социальных сетей, история ее развития. MySpace как типичный образец социальной сети, ориентированной на доминирующие потребности человека в самовыражении. Экономическое развитие социальных сетей.

    реферат, добавлен 20.03.2015

  • Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.

    статья, добавлен 17.11.2018

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.

    дипломная работа, добавлен 12.01.2012

  • Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.

    презентация, добавлен 16.10.2013

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Основные понятия об естественных и искусственных нейронных сетях и нейронах. Архитектура экспертных систем, их характеристики, функции, средства построения и назначение компонент. Методы поиска решения в пространстве состояний. Нечеткая логика Заде.

    курс лекций, добавлен 11.12.2013

  • Сетевые устройства - терминалы, которые соединяют в едином информационном пространстве гаджеты, используемые в повседневной деятельности. Расширенное машинное обучение, глубокие нейронные сети - основа создания автономных интеллектуальных систем.

    контрольная работа, добавлен 15.03.2019

  • Использование искусственных нейронных сетей при моделировании сложных нелинейных процессов. Изучение структуры и функционирования мозга человека. Анализ экономических параметров предприятия, оценка вероятности его банкротства при помощи нейрокомпьютеров.

    статья, добавлен 02.01.2025

  • С помощью искусственных нейронных сетей получение вычислительных моделей связи баллов, полученных студентами на ЕГЭ и успеваемостью студентов на первых курсах. Перспективы применения Data Mining при создании систем поддержки решений и управления вузом.

    статья, добавлен 19.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.