Елементи комбінаторики та теорії імовірності

Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).

Подобные документы

  • Скінченні гібридні інтегральні перетворення до розв'язання типових задач математичної фізики неоднорідних структур. Власні елементи узагальнено самоспряженої задачі Штурма–Ліувілля. Розвинення вектор-функції в абсолютно й рівномірно збіжний ряд Фур'є.

    автореферат, добавлен 23.11.2013

  • Формула Ито для семимартингалов с непрерывными траекториями. Стохастические дифференциальные уравнения и экспоненты. Интегралы от предсказуемых процессов по непрерывным локальным мартингалам. Обобщенная модель Блэка-шоулза. Цены платежных обязательств.

    методичка, добавлен 08.09.2015

  • Розгляд особливостей теорії матриць. Характеристика класів незміщених квадратичних та білінійних оцінок моментів другого порядку, дисперсії та коефіцієнта коваріації. Особливості методів теорії оцінок параметрів випадкових процесів та послідовностей.

    автореферат, добавлен 22.04.2014

  • Огляд досліджень субгармонічних функцій. Теореми про рівномірну неперервність. Зв’язок між різними видами збіжності послідовностей субгармонічних функцій. Загальні теореми про граничні множини Азаріна. Субгармонійні функції з нерегулярним зростанням.

    автореферат, добавлен 14.09.2015

  • Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.

    контрольная работа, добавлен 13.01.2013

  • Дослідження теорем про великі відхилення для логарифму відношення правдоподібності у задачі розрізнення процесів нормальної авторегресії. Застосування теореми аналізу поведінки ймовірностей помилок першого та другого роду критерію Неймана-Пірсона.

    автореферат, добавлен 27.07.2014

  • Методи комбінаторної теорії груп та теорії алгебри Лі, а також теорії многочленів над скінченними полями. Історія виникнення ідеї побудови кілець Лі, асоційованих з абстрактними групами. Основні означення та результати щодо комутаторного числення.

    автореферат, добавлен 11.10.2011

  • Особливість отримання формули для елементів матриці Кириченка, якій відповідає довільна перестановка без нерухомих точок. Аналіз конструкції квазікронекерівського добутку прямокутної таблиці чисел, яка не виводить за межі класу горенштейнових об'єктів.

    автореферат, добавлен 29.08.2015

  • Построение окружностей и касательных к ним. Формула Эйлера, инверсия и её свойства. Внутренние и внешние точки круга с границей. Треугольники, их отличия от подобия. Геометрия Мора-Маскерони, построения с помощью циркуля и линейки, их значение.

    реферат, добавлен 12.04.2012

  • Особливість вивчення алгоритмів виконання будь-якої арифметичної дії. Аналіз використання властивостей множення в роботі з раціональними числами. Основна характеристика визначення знаку добутку та проведення множення модулів у "зручному" порядку.

    конспект урока, добавлен 17.09.2018

  • Історичні відомості про векторну алгебру (поняття та її основні засновники). Вектори і лінійні дії з векторами. Вектори в системі координат. Скалярний добуток векторів. Система координат. Векторний добуток двох векторів. Мішаний добуток векторів.

    лекция, добавлен 08.08.2014

  • Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.

    курсовая работа, добавлен 14.12.2015

  • Властивості дій над матрицями. Кватерніони Гамільтона у вигляді квадратних матриць 4-го порядку з дійсними елементами. Властивості додавання матриць, множення, транспонування. Символи суми. Обернена матриця у випадку квадратних матриць другого порядку.

    контрольная работа, добавлен 05.03.2013

  • Определение наибольшего и наименьшего значений функции на заданном интервале. Построение касательной графика, параллельной к координатной оси. Формула Коши или обобщенная формула конечных приращений. Функция Лагранжа в раскрытие неопределенностей.

    лекция, добавлен 26.01.2014

  • Основні поняття теорії ігор, їх класифікація. Матричні ігри для двох осіб та геометрична інтерпретація гри 2х2. Вимірювання економічного ризику за допомогою теорії ігор. Приклади розв’язання задач на вибір оптимальної стратегії в іграх з природою.

    курсовая работа, добавлен 10.12.2011

  • Работы Герона как энциклопедия античной прикладной математики. Вычисление площади треугольника по его сторонам. Понятие героновых треугольников и пример простейшего такого треугольника. Формулы Герона для произвольного и равнобедренного треугольников.

    презентация, добавлен 14.01.2016

  • Умова на коефіцієнти ряду Діріхле, при виконанні якої зберігається формула Валірона для знаходження абсциси збіжності. Отримання оцінок модуля через максимальний член. Встановлення зв'язку між зростанням ряду Діріхле та поводженням його коефіцієнтів.

    автореферат, добавлен 23.02.2014

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Похідна функція, її геометричний та фізичний зміст. Основні теореми про диференційовані функції. Застосовування диференціала до наближених обчислень. Інтервали опуклості та угнутості графіка функції. Застосування похідної в теорії електричних кіл.

    учебное пособие, добавлен 22.06.2014

  • Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.

    методичка, добавлен 25.11.2013

  • Геометрическая интерпретация уравнения Бернулли. Уравнение для потока реальной (вязкой) жидкости. Основы гидродинамического подобия. Формула Дарси-Вейсбаха, внезапное расширение трубопровода. Ламинарное течение и профиль скорости в поперечном сечении.

    шпаргалка, добавлен 19.12.2014

  • Методичні основи вивчення додавання і віднімання чисел. Теоретико-множинний підхід до дій додавання та віднімання. Аксіоматичний підхід до транзитивних дій. Підхід "Натуральне число як міра величини". Вивчення арифметичних дій в початковій школі.

    курсовая работа, добавлен 22.02.2017

  • Формула классической вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности, Байеса, Бернулли, Пуассона. Числовые характеристики дискретных случайных величин: дисперсия и пр. Законы распределения непрерывной случайной величины.

    курсовая работа, добавлен 04.01.2016

  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка, добавлен 05.09.2012

  • Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.

    лекция, добавлен 29.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.