Правило и формулы дифференцирования элементарных функций

Изучение понятия элементарных функций в математике, их виды. Характеристика правил определения элементарных функций по Лиувиллю. Дифференцирование и нахождение производных по таблице. Дифференцируемая в точке функция, матрица Якоби и теорема Лебега.

Подобные документы

  • Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.

    реферат, добавлен 07.01.2023

  • Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.

    автореферат, добавлен 10.12.2013

  • Введение понятия урчуктных (разрывных) функций в дифференциальное исчисление. Нули разрывной функции. Совокупность разрывных функций. Касательные с угловыми коэффициентами. Классическая теорема Ролля. Расчет производной по классической теореме Ферма.

    статья, добавлен 20.05.2018

  • Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.

    реферат, добавлен 09.04.2013

  • Правило Лопиталя, его содержание, принципы и условия применения. Исследование неопределенности, непрерывных функций и их производных. Предел отношения двух бесконечно малых или бесконечно больших функций, соотношение с пределом отношения производных.

    презентация, добавлен 21.09.2013

  • Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.

    курсовая работа, добавлен 23.04.2011

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.

    курсовая работа, добавлен 25.04.2014

  • Изучение понятия и видов функций, под которыми понимают зависимость одной переменной величины от другой. График функции. Числовая, убывающая, возрастающая функция. Область определения. Непрерывная функция - функция без "скачков". Примеры четности функций.

    презентация, добавлен 16.11.2015

  • Определение понятия "ранг матрицы". Сущность элементарных преобразований матрицы. Алгоритм нахождения ранга матрицы. Характеристика процесса транспонирования матрицы. Способы и примеры вычисления ранга матрицы с помощью элементарных преобразований.

    презентация, добавлен 28.09.2015

  • Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.

    презентация, добавлен 22.03.2021

  • Свойства функций, непрерывных на отрезке. Теоремы и их доказательства. Определение производной и ее приложения. Закон равномерного движения, механический смысл производной. Геометрический смысл производной. Непрерывность дифференцируемой функции.

    лекция, добавлен 05.03.2009

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.

    презентация, добавлен 01.12.2016

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Рассмотрение общих свойств функций. Изучение области определения и множества значений функции. Характеристика экстремальных свойств. Оценка отличий монотонных функций. Определение чётности, периодичности, обратимости функций в задачах с параметром.

    курсовая работа, добавлен 22.02.2019

  • Понятие функции в математике, её основные свойства, аналитический и табличный способы задания. Виды функций и их свойства, коэффициент пропорциональности k. Область определения функции. Правила определения областей возрастания и убывания функций.

    контрольная работа, добавлен 13.10.2015

  • Тригонометрические функции как подвид элементарных функций. Анализ четности и периодичности, особенности построения графиков. Обратные тригонометрические функции и их характеристика. История развития тригонометрии и основные сферы ее применения.

    презентация, добавлен 22.01.2013

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Пример решения одной из основных канонических задач синтеза дискретных устройств, а именно, построения их с минимальным использованием логических элементов, которые выполняют функции формирования значений входных переменных и реализацию элементарных ФАЛ.

    лекция, добавлен 15.11.2017

  • Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.

    статья, добавлен 30.10.2016

  • Дискретная (или прерывная) математика как наука. Анализ сущности и особенностей понятий функция, функционал и оператор, применяемых в дискретной математике. Примеры инъекции и композиции функций. Формы задания функций (для унарных и бинарных функций).

    реферат, добавлен 23.01.2018

  • Характеристика функций и графиков функций: определения и понятия. Функции и их свойства: линейная, обратной пропорциональности, квадратичная, степенные. Движение функций по осям координат. Влияние модуля на функции: модуль и обратная пропорциональность.

    реферат, добавлен 15.08.2014

  • Характеристика особенностей первого и второго замечательного пределов. Сравнение бесконечно малых функций. Рассмотрение значения и места непрерывных функций. Определение непрерывности функции в точке. Исследование точки разрыва и их классификации.

    реферат, добавлен 18.12.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.