Теория алгебраических структур

Изучение различных алгебраических систем. Теория конечных групп симметрий. Группы матриц, перестановок. Отношение порядка в упорядоченном поле. Изучение в математике операций над элементами множества произвольной природы, сложение и умножение чисел.

Подобные документы

  • Теория делимости чисел как инструмент решения задач. Нахождение целочисленных решений алгебраических уравнений с тремя неизвестными (диофантовый анализ). Попытки найти решение нелинейного диофантова уравнения или доказать невозможность такого решения.

    реферат, добавлен 28.06.2009

  • Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.

    презентация, добавлен 23.12.2013

  • Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.

    контрольная работа, добавлен 02.12.2013

  • Проведение операции сложения над матрицами одного порядка, операции умножения матрицы на число и операции умножения матриц подходящего порядка. Рассмотрение аксиоматических исходных свойств операций. Характеристика приоритета операций над матрицами.

    реферат, добавлен 09.11.2014

  • Реализация нового численного метода решения систем линейных алгебраических уравнений, основанного на целенаправленном хаотическом поиске, стохастических вычислениях и использовании облачных технологий. Особенность генерирования векторов на итерации.

    статья, добавлен 12.01.2018

  • Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.

    лекция, добавлен 24.11.2015

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • История возникновения и использования матриц в алгебре. Рассмотрение основных понятий и типов матриц. Основные арифметические операции над матрицами. Свойства умножения матриц на число. Вычисление определителей второго и третьего порядка в матрице.

    контрольная работа, добавлен 15.11.2017

  • Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.

    лекция, добавлен 26.01.2014

  • Алгоритмы умножения, их отличительные особенности, этапы и функции. Умножение беззнаковых чисел, младшими разрядами вперед, со сдвигом суммы ЧП вправо, а также старшими со сдвигом влево. Пути умножения знаковых чисел в прямых и дополнительных кодах.

    реферат, добавлен 12.11.2011

  • Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.

    статья, добавлен 26.04.2019

  • Нахождение делителей и кратных чисел. Ознакомление с таблицей простых чисел. Разложение чисел на простые множители. Определение взаимно простых чисел. Правило нахождения наименьшего общего кратного. Сложение и вычитание дробей с разными знаменателями.

    разработка урока, добавлен 29.09.2017

  • Изучение основ теории решения изобретательских алгебраических задач, выявление их функций и областей применения. Рассмотрение примеров решения параметрических уравнений и неравенств алгебраическим, аналитическим и функционально-графическим способами.

    реферат, добавлен 02.02.2014

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.

    контрольная работа, добавлен 22.01.2011

  • Основное свойство дроби. Умножение и деление десятичных дробей. Обозначение множества рациональных чисел. Сокращение обыкновенных дробей. Сложение и вычитание десятичных дробей. Десятичное число как удобная форма записи дроби с указанными знаменателями.

    реферат, добавлен 27.09.2009

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.

    реферат, добавлен 31.10.2013

  • Исследование конечных, непрерывных и дискретных вероятностных пространств. Корреляционная теория. Закон больших чисел. Экспоненциальные полиномы и неравенства. Формулы полной вероятности и Байеса. Классические предельные теоремы. Дисперсия и энтропия.

    учебное пособие, добавлен 25.11.2013

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Виды матриц, линейные операции над ними. Умножение квадратных матриц первого и второго порядков. Вычисление обратных матриц второго и третьего порядков. Решение линейных уравнений методами Крамера и Гаусса. Применение матриц в различных областях науки.

    реферат, добавлен 02.12.2014

  • Решение систем линейных алгебраических уравнений с положительно определенными симметричными (несимметричными) плохо обусловленными матрицами модифицированным методом регуляризации. Возможность существенного улучшения решения СЛАУ с матрицами Гильберта.

    статья, добавлен 29.04.2019

  • Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.

    презентация, добавлен 29.08.2015

  • Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.

    монография, добавлен 18.05.2015

  • Исследование линейного дифференциального однородного уравнения второго порядка с произвольными коэффициентами с применением алгебраических преобразований. Изучение меры произвольности этих коэффициентов и методов безусловного решения таких уравнений.

    творческая работа, добавлен 24.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.