Основные проблемы эконометрического моделирования
Метод наименьших квадратов при оценке параметров линейной модели. Показатели разброса случайной величины, коэффициент детерминации, функция эластичности, гетероскедастичность и автокоррелированность ошибок в Гауссовском распределении и статистике Фишера.
Подобные документы
Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Основные направления эконометрической деятельности. Этапы эконометрического исследования: постановка проблемы, спецификация моделей, оценка параметров модели. Сущность построения модели множественной регрессии. Анализ оценок метода наименьших квадратов.
контрольная работа, добавлен 03.01.2012Сущность метода наименьших квадратов (МНК). Функциональная, стохастическая и корреляционная связи. Инструментарий МНК: процедуры проверки гипотезы о существовании связи, подбора лучшей функциональной модели, определения параметров уравнения регрессии.
лекция, добавлен 29.09.2013Подготовка статистической базы эконометрического исследования. Детерминированные и стохастические процессы. Модели дискретного выбора. Бинарные модели, прогнозирование. Иерархический кластерный анализ, производственная функция. Метод наименьших квадратов.
шпаргалка, добавлен 18.03.2016Особенности эконометрического моделирования стоимости квартир. Порядок построения классической линейной модели множественной регрессии. Анализ показателей: индекса корреляции и детерминации, F-критерий Фишера. Оценка матрици на мультиколлинеарность.
контрольная работа, добавлен 12.01.2014Базовый метод регрессионного анализа для оценки неизвестных параметров моделей по выборочным данным: история, свойства оценок. Парная линейная регрессия; взвешенный метод наименьших квадратов; авторегрессионное преобразование. Применение МНК в экономике.
реферат, добавлен 10.10.2012Построение линейной модели, параметры которой можно оценить методом наименьших квадратов. Выбор показателя корреляции. Составление таблицы дисперсионного анализа для расчета значения критерия Фишера. Расчет частных и парных коэффициентов эластичности.
контрольная работа, добавлен 15.12.2012Основные понятия и определения эконометрики и эконометрического моделирования. Парная корреляция и регрессия, проверка значимости параметров парной линейной модели. Виды линейной модели множественной регрессии. Системы линейных одновременных уравнений.
курс лекций, добавлен 26.11.2013Разработка эконометрической модели в пакете Econometric Views. Расчет модели множественной регессии для всей совокупности независимых факторов методом наименьших квадратов. Определение коэффициентов эластичности и детерминации. Анализ характера остатков.
курсовая работа, добавлен 04.12.2013Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.
контрольная работа, добавлен 07.10.2015Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.
контрольная работа, добавлен 14.04.2021Оценка коэффициента линейной регрессии по методу наименьших квадратов. Модель кейнсианского типа. Определение эмпирических коэффициентов регрессии и корреляции в случае линейной модели регрессии. Решение системы нормальных уравнений по формулам Крамера.
контрольная работа, добавлен 19.10.2013Характеристика этапов процесса эконометрического моделирования: постановочного, априорного, этапа параметризации, информационного, этапов идентификации и верификации модели. Статистический анализ модели и оценка ее параметров, проверка истинности.
статья, добавлен 29.03.2019Расчет матрицы парных коэффициентов корреляции и оценка статистической значимости коэффициентов корреляции. Связь цены квартиры с ее площадью. Уравнение множественной и линейной парной регрессии, детерминации, F-критерий Фишера, коэффициент эластичности.
контрольная работа, добавлен 13.05.2014Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.
контрольная работа, добавлен 16.04.2012Регрессионная модель как функция, описывающая зависимость между количественными характеристиками сложных систем. Гетероскедастичность — понятие прикладной статистики, означающее неоднородность наблюдений. Гомогенность дисперсии случайной ошибки.
статья, добавлен 23.03.2014Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.
курсовая работа, добавлен 17.04.2010Построение регрессионных моделей, определение оптимальной модели с помощью коэффициента детерминации. Вычисление коэффициента корреляции линейной модели, определение средней ошибки аппроксимации, общего коэффициента эластичности и критерия Фишера.
лабораторная работа, добавлен 18.11.2014Анализ модели CAPM, демонстрирующей прямую связь между риском ценной бумаги и ее доходностью, что позволяет ей показать справедливую доходность относительно имеющегося риска. Оценка модели с помощью метода наименьших квадратов; коэффициент детерминации.
статья, добавлен 11.03.2018Построение однофакторной модели регрессии. Анализ влияния фактора на зависимую переменную по модели с помощью коэффициентов детерминации, множественной корреляции, частных коэффициентов эластичности, а также степени линейной связи между переменными.
контрольная работа, добавлен 27.04.2011Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.
контрольная работа, добавлен 02.02.2014Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016- 24. Эконометрика
Основные понятия эконометрики, теории вероятностей и математической статистики. Модель множественной линейной регрессии. Временные ряды. гетероскедастичность и автокоррелированность. Системы одновременных уравнений, особенности их структуры и формы.
курс лекций, добавлен 10.12.2014 Построение доверительного интервала для коэффициента регрессии модели. Оценка качества модели, ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса на товар в зависимости от его цены, коэффициент эластичности.
контрольная работа, добавлен 31.03.2015