Координатно-параметрический метод решения задач с параметрами

Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.

Подобные документы

  • Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.

    учебное пособие, добавлен 23.12.2014

  • История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.

    реферат, добавлен 12.07.2020

  • Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.

    лекция, добавлен 29.10.2013

  • Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.

    курсовая работа, добавлен 01.04.2022

  • Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.

    презентация, добавлен 08.09.2013

  • Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.

    контрольная работа, добавлен 02.05.2013

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Равносильность уравнений с параметрами. Теоремы о равносильных преобразованиях уравнений, их доказательство и следствие. Характеристика равносильности неравенств с параметрами, их основные теоремы, определение из лемм, доказательства и следствия.

    лекция, добавлен 01.09.2017

  • Система массового обслуживания как техническое устройство, состоящее из двух узлов, которые могут независимо друг от друга выходить из строя. Знакомство с примерами решения задач по системам массового обслуживания. Способы решения линейных уравнений.

    контрольная работа, добавлен 28.03.2020

  • Определение сущности квадратного уравнения и его видов. Характеристика различных способов решения квадратных уравнений: по формуле, с использованием теоремы Виета и номограммы. Ознакомление с основными свойствами коэффициентов квадратного уравнения.

    контрольная работа, добавлен 17.12.2014

  • Недостатки геометрической интерпретации в решении задач линейного программирования. Принципиальные отличия вычислительных методов решения задач. Сущность симплекс–метода. Примеры решения задач линейного программирования с использованием симплекс-метода.

    презентация, добавлен 04.01.2018

  • Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.

    курсовая работа, добавлен 14.06.2011

  • Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.

    контрольная работа, добавлен 17.07.2016

  • Попытки нахождения формулы простых чисел для решения задач, представленных в Википедии. Изучение алгоритма решения Диофантовых уравнений (АРДУ). Возможность получения системы из трёх параметрических уравнений из базового уравнения с тремя неизвестными.

    статья, добавлен 30.03.2017

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Изучение истории развития науки математики. Характеристика применения Ахмесом метода одного и двух ложных положений (фальшивое правило). Анализ способов составления и решения квадратных уравнений в древнем Вавилоне. Решение уравнений в целых числах.

    реферат, добавлен 02.11.2010

  • Определение приведенного квадратного уравнения и неполного квадратного уравнения, алгоритмы их решения. Расчет формулы дискриминанта, корней квадратного уравнения и теоремы Виета. Методы решения: разложение на множители, введение новой переменной и др.

    конспект урока, добавлен 08.01.2016

  • Особенность определения комплексных чисел. Характеристика программы решения систем линейных и нелинейных уравнений. Основная сущность определения конечного результата численными методами с заданной погрешностью. Нахождение корней кубических задач.

    лабораторная работа, добавлен 12.04.2015

  • Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.

    статья, добавлен 02.02.2019

  • Основные правила решения иррациональных уравнений стандартного и смешанного вида. Примеры решения сложных иррациональных уравнений и нестандартных иррациональных неравенств. Особенности решения иррациональных неравенств стандартного и смешанного вида.

    контрольная работа, добавлен 22.12.2011

  • Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.

    контрольная работа, добавлен 29.05.2017

  • Численные методы решения нелинейных уравнений. Отделение корней уравнения. Численные методы интегрирования. Формулы прямоугольников, трапеций. Формула Симпсона. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера и Рунге-Кутты.

    методичка, добавлен 25.03.2015

  • Метод итерации - решение систем линейных алгебраических уравнений с вещественными коэффициентами относительно неизвестных, принимающих вещественные значения. Характеристика методов Якоби, Гаусса-Зейделя, П.Л. Чебышева. Применение итерационных методов.

    курсовая работа, добавлен 11.06.2013

  • Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.

    научная работа, добавлен 08.11.2015

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.