Регрессионный анализ моделировании систем. Исследование посещаемости WEB-сайта
Задачи корреляционно-регрессионного анализа. Корреляция случайных величин. Линейная регрессия, описание объекта, факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций. Построение уравнения регрессии, смысл модели.
Подобные документы
Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
лабораторная работа, добавлен 06.10.2016Оценка коэффициентов парного уравнения регрессии. Анализ графиков, отражающих зависимости между результативным показателем и факторными признаками. Изображение эллипсов рассеяния. Обзор особенностей заполнения матрицы парных коэффициентов корреляции.
лабораторная работа, добавлен 11.11.2017Ознакомление с формульным выражением параметрических показателей линейной и нелинейной парных корреляций. Анализ непараметрических проявлений взаимосвязи величин и сгруппированных альтернативных признаков. Оценка существенности уравнений регрессии.
презентация, добавлен 11.10.2013Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
курсовая работа, добавлен 12.12.2014F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.
презентация, добавлен 05.06.2012Статистическое описание и выборочные характеристики двумерного случайного вектора. Линейная регрессия, задачи линейного регрессионного анализа. Однофакторный дисперсионный анализ. Границы доверительных интервалов для параметров линейной регрессии.
курсовая работа, добавлен 28.10.2017Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
контрольная работа, добавлен 23.05.2015Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.
лабораторная работа, добавлен 01.11.2023Коммерческий банк: понятие, сущность, функции. Теоретические аспекты построения статистической модели. Проявление мультиколлинеарности. Проверка уравнения регрессии на значимость. Построение модели зависимости прибыли банков от значимых факторов.
курсовая работа, добавлен 26.05.2013Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Однофакторный дисперсионный анализ. Построение диаграммы рассеяния и нанесение на нее уравнения регрессии. Особенности применения однофакторного дисперсионного анализа.
контрольная работа, добавлен 21.10.2017Примеры корреляционной и прямолинейной зависимостей. Линейная регрессия и метод наименьших квадратов. Пояснение к оценке коэффициентов методом наименьших квадратов. Выборочный коэффициент корреляции. Построение модели, описывающей изменения величин.
практическая работа, добавлен 28.03.2020Определение дисперсии, средних квадратичных отклонений, моды и медианы выборки по X и по Y, корреляционного момента. Построение диаграммы рассеивания полигонов, гистограмм частот, эмпирических функций распределения. Линейная и параболическая регрессии.
курсовая работа, добавлен 17.01.2013Этапы проведения корреляционного и регрессионного анализа с целью выявления зависимости объема работ от числа рабочих. Анализ и понятие полного факторного эксперимента, его преимущества. Особенности проведения эксперимента, получение уравнения регрессии.
контрольная работа, добавлен 07.05.2012Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.
контрольная работа, добавлен 09.06.2015Анализ исходных динамических рядов, их исследование на непрерывность. Количественное изменение тесноты связи признака-функции и признаков-факторов методом парной корреляции. Расчет показателей вариации. Построение уравнения множественной регрессии.
курсовая работа, добавлен 22.10.2017Проверка гипотезы о нормальном распределении случайных величин по критерию Пирсона, анализ их зависимости. Построение полигона и гистограмм относительных частот. Определение выборочного коэффициента корелляции. Уравнения и графики прямых линий регрессии.
контрольная работа, добавлен 27.10.2011Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Построение поля корреляции, уравнения линейной и степенной парной регрессии. Расчет значения спроса, его квадратичного отклонения и коэффициентов автокорреляции. Выполнение сглаживания временного ряда методом скользящих средних с интервалом сглаживания.
контрольная работа, добавлен 30.12.2010Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.
практическая работа, добавлен 31.10.2014Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.
презентация, добавлен 15.12.2014