Неравенство Коши-Буняковского и его приложения

Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.

Подобные документы

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Описание ассоциированных решений задачи Коши для систем уравнений в дифференциалах, соответствующих системам уравнений с разрывной и обобщенной правыми частями. Решение этой задачи для соответствующих им систем в прямом произведении алгебр мнемофункций.

    автореферат, добавлен 19.08.2018

  • Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.

    курсовая работа, добавлен 30.11.2012

  • Получение необходимых и достаточных условий справедливости интегрально-дифференциального неравенства. Особенности использования методов исследования вариационных задач, разработанные Пермским семинаром по функционально-дифференциальным уравнениям.

    статья, добавлен 26.04.2019

  • Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.

    лекция, добавлен 06.09.2017

  • Сущность принципа резолюций в логике высказываний. Доказательства невыполнимости, основанные на данном принципе. Правила и примеры использования метода доказательства теорем через поиск противоречий. Стратегии решении задач в алгебре предикатов.

    курсовая работа, добавлен 06.02.2014

  • Изучение теории рядов и применения их для решения различного типа задач. Составление последовательности частичных сумм порядка. Анализ интегрального признака Коши и интегрирования дифференциальных уравнений. Определение радиуса сходимости степенной цепи.

    дипломная работа, добавлен 28.02.2017

  • Математическое и физическое определение фрактала. Дифференциальные уравнения дробного порядка и примеры решений задач Коши. Метод Шварца и исследование двухсеточных параллельных алгоритмов для решения дробно-дифференциальных уравнений аномальной диффузии.

    дипломная работа, добавлен 22.09.2014

  • Общая характеристика методов исследования вариационных задач. Рассмотрение необходимых и достаточных условий справедливости интегро-дифференциального неравенства Виртингера. Знакомство с основными особенностями модифицированной функции Бесселя I рода.

    статья, добавлен 26.04.2019

  • Особенность применения конформных преобразований и интеграла типа Коши. Выполнение условий непрерывности тангенциальной составляющей вектора напряженности магнитного поля. Постановка и решение краевой задачи для комплексно-сопряженной магнитной индукции.

    статья, добавлен 06.11.2018

  • Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.

    контрольная работа, добавлен 11.03.2011

  • Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

    статья, добавлен 30.10.2016

  • Условия и особенности применения элементарной алгебры и тригонометрии в ряде случаев при решении задач на вычисление применение векторов. Методика составления плана решения, а также требования к данному процессу. Выделение неколлинеарных векторов.

    реферат, добавлен 18.06.2015

  • Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.

    задача, добавлен 31.03.2014

  • Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.

    лекция, добавлен 18.05.2010

  • Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.

    курсовая работа, добавлен 13.10.2017

  • Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.

    курс лекций, добавлен 01.09.2017

  • Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.

    курсовая работа, добавлен 22.02.2019

  • Разные типы решений задачи Коши. Применение математической модели недемпфированного нелинейного осциллятора для анализа свойств численных методов. Решение уравнения Дуффинга. Локальная и глобальная погрешности при решении задач гармонического осциллятора.

    статья, добавлен 06.11.2018

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.

    контрольная работа, добавлен 26.02.2011

  • Изучение геометрического смысла смешанного произведения нескольких некомпланарных векторов, лежащих в основании параллелепипеда. Доказательство равенства скалярного произведения, не зависящего от порядка множителей. Обзор свойств линейности равенства.

    лекция, добавлен 29.09.2013

  • Анализ аналитического определения обобщенного скалярного произведения векторов в данном n-мерном (векторном) пространстве. Изучение эквивалентности аналитического и аксиоматического определения скалярного произведения и всех рассматриваемых пространств.

    дипломная работа, добавлен 10.04.2015

  • Вещественная функция, гармоническая в круге. Первоначальное изучение граничного поведения. Формула Коши-Грина, обобщение в случае единичного круга. Интегральное представление гармонических функций. Бесконечные числовые произведения чисел, их сходимость.

    курс лекций, добавлен 24.09.2017

  • Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.

    контрольная работа, добавлен 27.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.