Алгоритмы вычислительной математики
Метод гиперплоскостей для построения выпуклой области. Решение нелинейных уравнений на основе минимизации функций многих переменных. Сокращение интервала неопределенности методами золотого сечения, квадратичной аппроксимации и Давидона-Флетчера-Пауэлла.
Подобные документы
Роль метода Якоби при решении научных и промышленных проблем: реализация алгоритмов вычислительной математики и физики, обрабатывание результатов экспериментальных исследований. Использование в данном процессе программы на языке программирования C++.
статья, добавлен 20.07.2018Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.
курсовая работа, добавлен 14.03.2015История Божественной гармонии. Первое упоминание деления отрезка в крайнем и среднем отношении. Применение закона гармонического деления в математике. Способ построения пентаграммы. Использование закономерности и связи золотого сечения и числа Фибоначчи.
научная работа, добавлен 03.05.2019Понятие математической модели, ее основные свойства. Описание методов аппроксимации, применяемых для построения регрессионных математических моделей. Обзор основных функций системы MathCad. Алгоритмический анализ задачи и описание функционирования.
курсовая работа, добавлен 09.12.2013Определение абсолютной и относительной ошибки при помощи метода дифференциалов. Расчет линейной аппроксимации, применение метода интегралов для вычисления площади, работы силы. Практика решения характеристических уравнений. Общее решение ЛОДУ, ЛНДУ.
контрольная работа, добавлен 11.04.2009Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.
контрольная работа, добавлен 04.12.2011Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013- 59. Многоуровневые алгоритмы и структуры распараллеливания решений систем уравнений большой размерности
Анализ особенностей решения систем линейных и нелинейных уравнений большой размерности. Изучение особенностей использования диакоптических методов для разработки более эффективных алгоритмов и новых параллельных многопроцессорных вычислительных систем.
статья, добавлен 18.11.2018 Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.
статья, добавлен 05.12.2018Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.
реферат, добавлен 06.03.2010Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.
творческая работа, добавлен 26.06.2011Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.
презентация, добавлен 23.08.2016Особенность определения комплексных чисел. Характеристика программы решения систем линейных и нелинейных уравнений. Основная сущность определения конечного результата численными методами с заданной погрешностью. Нахождение корней кубических задач.
лабораторная работа, добавлен 12.04.2015Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Матрица квадратичной формы. Преобразование квадратичной формы при линейном однородном преобразовании переменных. Приведение действительной квадратичной формы к нормальному виду. Закон инерции квадратичных форм. Знакоопределенные квадратичные формы.
курсовая работа, добавлен 16.11.2012Анализ перспектив и "точек роста" современной теоретической и вычислительной математики. Теория нечетких множеств. Развитие идеи системного обобщения математики в области теории информации. Реализация идей системного интервального обобщения математики.
статья, добавлен 29.04.2017Алгоритм построения графика линейной и квадратичной функции с модулем. Получение более широких знаний о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины. Формирование графических навыков в процессе изучения функций.
лекция, добавлен 08.03.2023Экстремумы функций многих переменных. Необходимые и достаточные условия экстремума. Локальные и условные экстремумы. Метод множителей Лагранжа. Описание экстремумов функции переменных, формулировании необходимого и достаточного условия их существования.
контрольная работа, добавлен 27.08.2010Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011- 74. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010