Понятие вещественного числа

История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

Подобные документы

  • Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.

    презентация, добавлен 16.01.2018

  • Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.

    статья, добавлен 25.12.2017

  • Исследование роли простых чисел в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Определение закономерность распределения простых чисел в ряду натуральных чисел. Составление системы комбинаций арифметических прогрессий.

    статья, добавлен 30.03.2017

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Исследование систем, образованных с помощью оператора сдвига в пространстве. Понятие фреймовой последовательности. Системы весовых экспонент. Фреймы сдвигов и их границы. Последовательность вещественных чисел. Изучение скалярного произведения системы.

    статья, добавлен 31.05.2013

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.

    реферат, добавлен 12.11.2016

  • Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.

    реферат, добавлен 15.10.2021

  • Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.

    лекция, добавлен 08.08.2014

  • Биография Пифагора и его вклад в математику. Основы Пифагоризма и теории переселения душ. Сверхсовершенные, несовершенные и совершенные числа. Пифагор и его школа. Влияние пифагорейских гетерий на политику. Теория чисел Пифагора и таблица десяти чисел.

    реферат, добавлен 26.04.2009

  • Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.

    реферат, добавлен 19.02.2014

  • Методы построения сопряженных чисел в различных гиперкомплексных числовых системах. Существенные свойства сопряженных чисел, отличие их свойств от сопряженных в комплексной системе. Правило построения сопряженного числа для систем второго порядка.

    статья, добавлен 29.01.2019

  • Алгоритм Евклида — наxождение наибольшего общего делителя двуx целыx чисел делением и вычитанием. Описание алгоритма Решето Эратосфена (нахождения всех простых чисел до некоторого целого числа n). Реализация алгоритмов на разныx языкаx программирования.

    реферат, добавлен 05.12.2022

  • Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.

    реферат, добавлен 02.03.2017

  • Порівняльна характеристика раціональних і нераціональних чисел. Властивості протилежних і обернених чисел. Операції додавання та множення. Модуль дійсного числа. Поняття кореня та підходи до його розрахунку. Дії над степенями з натуральними показниками.

    методичка, добавлен 22.07.2017

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Проведение урока на закрепление знаний нумерации чисел от 1 до 10. Повторение прямого и обратного устного счёта. Работа с веером цифр и повторение состава чисел 6 и 7. Проведение физкультминутки. Решение задач по изучаемой теме и отгадывание загадок.

    конспект урока, добавлен 28.01.2011

  • Основна теорема арифметики. Подільність чисел на множині цілих чисел та його властивості. Застосування ланцюгових дробів. Канонічний розклад числа та діофантові рівняння. Системи лінійних конгруенцій, методи розв’язання. Китайська теорема про лишки.

    шпаргалка, добавлен 07.06.2019

  • Прикладная математика, процесс математического моделирования. Абсолютная и относительная погрешность приближения и ее граница. Проценты. Нахождение процентов от числа, числа по ее процентам, процентного отношения двух чисел. Решение квадратных уравнений.

    шпаргалка, добавлен 06.09.2010

  • Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.

    лекция, добавлен 24.01.2014

  • Краткие биографические данные о жизни Леонардо Пизанского - первого крупного математика средневековой Европы. Его математические труды: "Liber abaci", "Liber quadratorum", "Practica geometriae". Развитие алгебры и теории чисел. Сущность чисел Фибоначчи.

    реферат, добавлен 26.10.2014

  • Дослідження застосування звичайних комплексних, дуальних і подвійних чисел, аналіз різниці між ними. Комплексне обґрунтування сутності поняття "комплексні числа". Застосування до вивчення геометричних перетворень та розв’язування геометричних задач.

    курсовая работа, добавлен 19.04.2017

  • История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.

    статья, добавлен 03.09.2011

  • Історія досліджень алгебраїчних та трансцендентних чисел. Викладення тверджень про трансцендентність деяких важливих математичних сталих. Корінь многочлена, коефіцієнтами якого є алгебраїчні числа. Відомі трансцендентні константи, перше їх використання.

    реферат, добавлен 13.11.2014

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.