Метод Монте-Карло

Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.

Подобные документы

  • Основы моделирования, классификации моделей. Анализ результатов натурных и вычислительных экспериментов. Классические и поисковые методы генерации и использования псевдослучайных чисел. Имитационное и статистическое моделирование, метод Монте-Карло.

    дипломная работа, добавлен 13.10.2015

  • Поле рассеяния исходных случайных величин. Оценка числовых характеристик для исходных случайных величин. Расчёт оценки плотности распределения вероятностей для исходных случайных величин. Расчёт оптимальной линейной регрессии для случайных величин.

    курсовая работа, добавлен 16.11.2016

  • Применение метода Монте-Карло для моделирования переноса нейтронов в ядерных реакторах. Моделирование трехмерных систем с произвольной геометрией с использованием комбинаторного подхода. Применение программы Призма для решения линейных задач переноса.

    статья, добавлен 15.01.2019

  • Разработка комплекса программ для обоснования безопасной работы ядерного реактора. Расчет пространственно-энергетического распределения нейтронов в элементах активной зоны. Решение кинетических уравнений с применением прецизионных алгоритмов Монте-Карло.

    автореферат, добавлен 03.02.2018

  • Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.

    статья, добавлен 04.03.2012

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Сущность функции распределения случайной величины и ее свойства, плотность распределения вероятностей. Математическое ожидание случайной величины, его вероятностный смысл и свойства. Критерий согласия Пирсона, дисперсия случайной величины и ее свойства.

    курсовая работа, добавлен 07.02.2016

  • Понятие и виды случайных величин, их числовые характеристики. Свойства дисперсии и вычисление числовых характеристик стандартных распределений. Функции от случайных величин, условные законы распределения. Потоки событий и теории массового обслуживания.

    лекция, добавлен 21.03.2018

  • Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.

    контрольная работа, добавлен 13.01.2011

  • Логическая сумма несовместных событий. Произведение вероятностей для независимых событий. Вероятность появления бездефектной детали. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины.

    контрольная работа, добавлен 01.03.2015

  • Способы задания случайных величин с помощью законов. Попадание величины в заданный интервал. Случайная величина, подчиняющаяся нормальному закону распределения. Кривые плотности вероятности. Изображение векторов в виде графика. Генератор случайных чисел.

    курсовая работа, добавлен 18.01.2016

  • Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.

    курсовая работа, добавлен 08.02.2016

  • Математическое моделирование как современный метод исследования сложных естественных процессов. Анализ возможности использования переменной относительной погрешности вычисления для существенного сокращения времени расчета без ущерба для точности.

    статья, добавлен 18.12.2017

  • Математическое ожидание, дисперсия, среднее квадратичное отклонение. Биноминальный закон распределения. Теория массового обслуживания. Закон больших чисел и теорема Бернулли. Вероятность попадания на малый интервал времени двух или более событий.

    лекция, добавлен 29.06.2016

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Изучение случайных явлений, статистическая обработка результатов численных заданий. Решение задач, связанных с теорией вероятности. Способы вычисления наступления предполагаемого события. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа, добавлен 18.12.2013

  • Изложение теории ошибок и методов обработки непосредственно случайных погрешностей: задача теории ошибок, классификация и типы; вероятность случайной величины; распределение Гаусса для бесконечного числа случайных измерений; доверительная вероятность.

    курсовая работа, добавлен 07.06.2014

  • Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.

    контрольная работа, добавлен 05.11.2016

  • Определение вероятности появления события во множестве независимых опытов. Расчет математического ожидания и дисперсии величины Х. Расчет и построение графика функции распределения. Построение графиков случайных величин, определение плотности вероятности.

    контрольная работа, добавлен 21.09.2023

  • Рассмотрение статического ряда частоты вероятности. Расчет оценки математического ожидания возможности брака. Вероятность попадания величины в заданный интервал согласно эмпирической функции. Вычисления выборочной средней и исправленной дисперсии.

    контрольная работа, добавлен 11.02.2014

  • Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.

    контрольная работа, добавлен 04.11.2014

  • Застосування квадратурних формул з вагою до інтеграла з нескінченними межами і розривною функцією. Метод Канторовича для виділення особливостей. Наближене обчислення кратних інтегралів. Метод статистичних випробувань Монте-Карло, Люстерника і Діткіна.

    курсовая работа, добавлен 22.01.2013

  • Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.

    задача, добавлен 20.11.2015

  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка, добавлен 05.09.2012

  • Математическое ожидание нормально распределенной случайной величины. Проверка гипотезы о влиянии фактора на качество объекта на основании пяти измерений для трех уровней фактора методом дисперсионного анализа. Нормальное распределение случайных величин.

    лабораторная работа, добавлен 01.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.