Жизнь Н.И. Лобачевского и его научная деятельность
Детство и факторы, повлиявшие на формирование интереса Н.И. Лобачевского к неевклидовой геометрии. Теория об эллиптическом движении тел и другие научные исследования. Сжатое изложение основ геометрии со строгим доказательством теорем о параллельных.
Подобные документы
Конвенционализм как философская концепция, согласно которой научные понятия и теоретические построения являются в основе своей продуктами соглашения между учёными. Общая характеристика теории относительности Эйнштейна. Знакомство с функциями геометрии.
презентация, добавлен 16.02.2014Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Учения о тригонометрических величинах. Греческая наука и ионийская школа натурфилософии.
реферат, добавлен 05.01.2015Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.
методичка, добавлен 10.04.2012Начертательная и прикладная геометрия как учебные и научные дисциплины, предмет их изучения. Пример практического использования их распространенных методов и приемов при решении задач конструирования технических поверхностей летательных аппаратов.
статья, добавлен 06.05.2018Задачи упаковки и раскроя как предмет исследования вычислительной геометрии, а методы их решения – новое направление теории исследования операций. Разработка эффективных алгоритмов, основанных на применении методов локальной и глобальной оптимизации.
статья, добавлен 03.05.2019Изложение универсального метода построения трёхмерных проекций гиперкубов любых n-мерных измерений (3ПГК-n) любых проекций и ракурсов. Алгебраические формулы для определения количества единичных геометрических элементов n-мерных гиперкубов, их проекций.
научная работа, добавлен 26.04.2014Периоды развития математики в Китае и наиболее яркие открытия китайских учёных. Структура и рассматриваемые научные вопросы математических сочинений, входящих в сборник в "Десятикнижье". Техника вычислений, методы алгебры и геометрии в Древнем Китае.
реферат, добавлен 25.04.2011История развития представлений о функциональных зависимостях в точных и естественных науках. Формулировка определения Эйлера, Лобачевского и Дирихле. Рассмотрение основных видов функций в математике, изучение их свойств и применения, построение графиков.
курсовая работа, добавлен 25.10.2023- 109. Проецирование фигур
Предмет и метод начертательной геометрии. Методика проецирования фигур на плоскость. Способы проецирования. Методика построения параллельных проекций. Проекция точки в системе двух плоскостей проекций. Положение прямой относительно плоскостей проекций.
контрольная работа, добавлен 12.12.2011 - 110. Высшая математика
Изучение разделов линейной и векторной алгебры, аналитической геометрии, основ математического анализа и операционного исчисления. Рассмотрение примеров решения двойных, тройных, криволинейных и поверхностных интегралов, дифференциальных уравнений.
учебное пособие, добавлен 12.02.2016 Доказательство теоремы о 5-ом постулате Евклида как следствия его первых трех постулатов с использованием доводов, имеющих форму доказательства от противного, методом доведения до абсурда. Сферическое пространство Римана и плоскости Лобачевского.
статья, добавлен 29.08.2016Реконструкция картины возникновения теоретической математики. Отличие древнегреческой дедуктивной геометрии от системы вычислений на Востоке. Обобщение способов установления зависимости между получаемыми результатами и унификация правил решения задач.
автореферат, добавлен 25.02.2018Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.
презентация, добавлен 20.01.2016Взаимосвязь истории и математики. Вклад в развитие математических наук С.Л. Соболева, Н.И. Лобачевского, Н.Е. Жуковского и других русских ученых. Задачи из работ Эйлера и "Арифметики" Магницкого. Проверка знаний школьников с помощью конкурса и ребусов.
презентация, добавлен 28.10.2011- 115. Аксиомы планиметрии
Характеристика раздела геометрии, в котором изучаются изображения на поверхности. Точка и прямая как основные геометрические фигуры на плоскости. Проведение исследования аксиом принадлежности, расположения, измерения, откладывания и параллельности.
презентация, добавлен 25.01.2017 История возникновения геометрии и тригонометрии. Первые методы нахождения неизвестных параметров треугольника. История жизни знаменитых геометров. Теорема Пифагора. Теория пределов. Понятие прямоугольной системы координат. Геометрические фигуры.
реферат, добавлен 15.01.2013Изучение основ начертательной геометрии в непосредственной связи с основами технического рисунка, правила выполнения схем, элементов строительного и топографического черчения. Использование электронных вычислительных машин для решения графических задач.
учебное пособие, добавлен 27.09.2013Обзор одного из направлений векторного исчисления – геометрического. Характеристика сведений о научной деятельности Германа Грассмана. Анализ основ его учения о протяженности, расширении свойств евклидовой плоской геометрии на n-мерное пространство.
статья, добавлен 26.04.2019- 119. Векторный анализ
Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.
лекция, добавлен 18.10.2013 - 120. Комплексные числа
Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015 Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.
курс лекций, добавлен 02.05.2014Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.
курс лекций, добавлен 23.09.2012Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Аксиоматический метод построения научной теории. Выделение понятий, формулирование аксиомы. Выведение теоремы и других понятий логическим путём. Пять "общих понятий" Евклида, причины его критики. Модель планиметрии Лобачевского на евклидовой плоскости.
реферат, добавлен 08.10.2011- 125. Высшая математика
Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.
курс лекций, добавлен 30.04.2012