Линейная алгебра и аналитическая геометрия
Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.
Подобные документы
Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
методичка, добавлен 27.04.2016Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016Изучение уравнения прямой линии с направляющим вектором. Гипербола - множество точек плоскости, для которых модуль разности расстояний до двух фиксированных фокусов постоянный. Векторная функция скалярного аргумента. Прямая линия, кривые второго порядка.
презентация, добавлен 29.10.2017Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.
контрольная работа, добавлен 16.01.2015Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.
книга, добавлен 23.11.2010- 56. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.
контрольная работа, добавлен 31.01.2014Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011Уравнение высоты треугольника, тангенс угла между диагоналями параллелограмма. Уравнение плоскости, проходящей через заданную точку параллельно плоскости. Канонические уравнения прямой. Координаты точки пересечения прямой. Геометрическое место точек.
контрольная работа, добавлен 14.03.2016Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Векторная алгебра и кривые второго порядка. Аналитическая геометрия в пространстве. Определенный интеграл и его геометрические приложения. Обобщение понятия определенного интеграла. Функции нескольких переменных. Двойные и несобственные интегралы.
учебное пособие, добавлен 03.10.2012Линейные пространства прямоугольных и квадратных матриц, многочленов и непрерывных вещественных функций. Теоремы, применяемые к квадратным матрицам. Зависимость в линейных пространствах и линейная комбинация элементов. Линейно независимые подсистемы.
лекция, добавлен 18.02.2010- 63. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
контрольная работа, добавлен 22.12.2019 Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.
лекция, добавлен 26.01.2014Шаги, совершаемые при сведении простого уравнения к эквивалентному, основанные на использовании четырех аксиом. Линейные однородные уравнения и их основные свойства, корни действительные и различные. Линейные уравнения высших порядков, их параметры.
реферат, добавлен 21.08.2017Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.
учебное пособие, добавлен 31.03.2015Характеристика особенностей построения Декартовой прямоугольной системы координат (на плоскости, в пространстве). Графическое решение систем алгебраических линейных уравнений и задач линейного программирования с помощью Декартовой прямоугольной системы.
курсовая работа, добавлен 31.01.2015Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.
контрольная работа, добавлен 21.01.2012Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.
лекция, добавлен 07.07.2015Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.
учебное пособие, добавлен 09.12.2016Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Уравнение прямой с направляющим вектором. Математическое описание прямой с нормальным вектором. Уравнение прямой с угловым коэффициентом. Математическое выражение кривых второго порядка. Полярная система координат. Векторная функция скалярного аргумента.
презентация, добавлен 29.09.2017Действия с комплексными числами. Системы линейных уравнений с тремя неизвестными. Решение линейных неравенств, содержащих знак модуля. Показательная функция, ее свойства, график. Показательные уравнения и неравенства. Логарифмическая функция, ее свойства.
методичка, добавлен 02.04.2015Определение системы линейных однородных уравнений и ее нетривиальные решения. Доказательство по теореме Крамера. Пример линейной комбинации. Образование базиса подпространства. Понятие фундаментальной системы решений. Линейные неоднородные уравнения.
лекция, добавлен 26.01.2014