О последовательности 6 исторических этапов появления основных математических понятий
Периодизация 6-уровневого развития математического знания при использовании психолого-гносеологических оснований отражения действительности в сознании человека. Изменение логики и математики по линии число-уравнение-функция-алгоритм-непредикативность.
Подобные документы
Особенности развития прикладного и теоретического направления в развитии математики. История и этапы развития этой науки. Точки зрения на прикладную математику, ее специфика и основные элементы. Классификация математических моделей. Понятие алгоритма.
контрольная работа, добавлен 12.11.2011Теоретические и психолого-педагогические основы изучения элементов математической логики в начальной школе. Высказывания и операции над ними. Числовые равенства, уравнения и неравенства, правильные и неправильные рассуждения, высказывания с кванторами.
курсовая работа, добавлен 06.11.2010Рассмотрение современных взглядов развития дифференциального уравнения и его значения в обучении. Перекрестный и сравнительный анализ влияния методик и различных факторов на развитие математики. Определение процесса определения производной функции.
статья, добавлен 14.12.2024Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.
реферат, добавлен 08.11.2012Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.
курс лекций, добавлен 08.10.2017Уравнение с параметрами как математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Алгоритм решения уравнения с параметром. Задачи с линейным, квадратным, дробно–рациональным уравнением с ответами.
реферат, добавлен 19.11.2011Ознакомление с основными методами расширения числовых множеств от натуральных до комплексных, как способами построения нового математического аппарата. Рассмотрение особенностей решения уравнений с комплексной переменной. Изучение теоремы Виета.
контрольная работа, добавлен 20.11.2016Подходы к определению понятия "функция", графики функции. Изучение основных элементарных функций в школьном курсе математики: линейной, квадратичной, кубической, обратной пропорциональности, степенной, показательной, логарифмической и тригонометрической.
курсовая работа, добавлен 01.03.2013Понятие и содержание числа, этапы его эволюции. Вычислительная техника вавилонян и египтян, их отличия. Пифагор и его школа, учения о числе. Периоды развития математики. Системы счисления в Древней Греции. Способ наименования больших чисел Архимеда.
шпаргалка, добавлен 22.01.2011Анализ мышления как познавательного процесса. Изучение потенциала математики в развитии логического мышления младших школьников. Развитие логических приемов мышления при формировании математических понятий, а также при обучении учащихся суждению.
дипломная работа, добавлен 16.05.2016Описание основных методов решения показательных уравнений. Предупреждение появления типичных ошибок в записи функции, подготовка к контрольной работе. Активизация работы класса через воспитание воли и настойчивости для достижения конечных результатов.
разработка урока, добавлен 27.10.2015Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.
методичка, добавлен 03.03.2012Формирование понятия геометрических фигур и числа в качестве инструмента идеализации реальных объектов - один из важнейших этапов развития математических знаний. Универсальность как отличительная особенность процесса математизации научных знаний.
реферат, добавлен 16.02.2018Історія виникнення чисел та їх понять. Розширення числового сприйняття в історичному аспекті та шкільному курсі математики. Аналіз підручників про розвиток світогляду чисельності. Дослідження відомостей про натуральні суми та їх дії в початкових класах.
курсовая работа, добавлен 15.05.2017Описание удивительной таблицы натуральных логарифмов, определенных из кинематических соображений. Начало математического анализа в комплексной области, теории функций комплексного переменного. Точное определение иррациональных и трансцендентных чисел.
статья, добавлен 25.07.2018Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.
реферат, добавлен 08.09.2015- 68. Алгебра логики
Возникновение логики. Элементы математической логики. Операции над логическими функциями. Булевы функции. Преобразование выражений булевых функций. Нахождение исходного выражения по его значениям. Применение в вычислительной технике и информатике.
реферат, добавлен 14.07.2008 Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.
лекция, добавлен 29.09.2013Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011Золотое сечение - иррациональное число, открытое древними греками. Существование числовой последовательности, известной как ряд Фибоначчи. Примеры спирального развития сегментов раковины. Пропорции различных частей человеческого тела, его золотое сечение.
реферат, добавлен 09.10.2018Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Способы задания функций. Задача рассматриваемой в работе функции через бесконечный ряд. Дзета-функция Римана и ее применение в теории чисел. Дальнейшее исследование данной функции.
реферат, добавлен 12.03.2010Число, как главное понятие в финитной математике. Способы использования математического аппарата для "создания" так называемой "теории методов". Модели биоподобных технологий, которые были разработаны в математике. Описание объектов в реальности.
статья, добавлен 11.03.2019Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.
реферат, добавлен 28.10.2018Рассмотрение особенностей развития математического анализа и его роли в современной науке. Перекрестный и сравнительный анализ влияния технологий и факторов роста в образовании на развитие математического анализа. Решение уравнений в частных производных.
статья, добавлен 15.12.2024