Простые идеалы в частичных полукольцах непрерывных значных функций

Частичные полукольца непрерывных функций на топологических пространствах X со значениями в полукольце [0, ∞] рассматриваемом с обычной топологией. Максимальные идеалы и основополагающие свойства простых идеалов. Применение соответствий полуколец.

Подобные документы

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.

    лекция, добавлен 29.09.2014

  • Статистика в пространствах произвольной природы. Изучение расстояний в различных пространствах данных. Аксиоматическое введение метрики в пространстве неотрицательных суммируемых функций. Мера симметрической разности как расстояние между множествами.

    статья, добавлен 15.05.2017

  • Основные свойства и построение графиков степенной, показательной, логарифмической, тригонометрической и обратной тригонометрической функций. Определение элементарных функций, области их определения и значений. Примеры элементарных функций и их свойства.

    курсовая работа, добавлен 30.04.2014

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.

    презентация, добавлен 18.09.2013

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.

    презентация, добавлен 17.12.2014

  • Конструктивные средства математического моделирования отношения непересечения пары сегментов эллипсов. Построение класса квази-phi-функций для сегментов эллипсов с учетом их непрерывных трансляций и вращений. Решение задач геометрического проектирования.

    статья, добавлен 14.01.2017

  • Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.

    статья, добавлен 20.05.2017

  • Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.

    реферат, добавлен 26.04.2014

  • Основные правила обозначения пространства непрерывных функций. Характеристика классического решения краевой задачи. Описание основных теорем, их положения и обоснование. Процесс расширения понятия решения краевой задачи по двум направлениям, их отличия.

    презентация, добавлен 30.10.2013

  • Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.

    контрольная работа, добавлен 02.11.2010

  • Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.

    контрольная работа, добавлен 15.06.2011

  • Описание новых классов фреймов Парсеваля (простых и составных) в произвольных гильбертовых пространствах конечной или бесконечной размерности. Доказательство теорем о представлении составных фреймов Парсеваля через суммирование разных классов простых.

    статья, добавлен 31.05.2013

  • Рассмотрение общих свойств функций. Изучение области определения и множества значений функции. Характеристика экстремальных свойств. Оценка отличий монотонных функций. Определение чётности, периодичности, обратимости функций в задачах с параметром.

    курсовая работа, добавлен 22.02.2019

  • Формулирование и доказывание теоремы общего характера об использовании метода гомотопий для произвольных конечномерных полей. Рассмотрение преимуществ использования метода гомотопий. Вычисление индекса изолированной особой точки векторного поля.

    статья, добавлен 26.04.2019

  • Понятие, свойства, графики элементарных функций. Характеристика степенной, квадратичной, показательной, логарифмической функций. Математическое описание обратно пропорциональной зависимости. Особенности графического изображения тригонометрических функций.

    реферат, добавлен 17.06.2014

  • Разделение понятия дифференциала функции на независимые переменные, разложение дифференциалов независимых переменных равными приращениями. Частные производные высших порядков. Расчет непрерывных частных производных всех порядков от сложных функций.

    лекция, добавлен 16.06.2014

  • Получение условий разрешимости краевой задачи для функционально-дифференциального уравнения третьего порядка в случае резонанса. Ядро и образ оператора. Относительный коэффициент сюръективности оператора. Пространство абсолютно непрерывных функций.

    статья, добавлен 26.04.2019

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Равенство отношения минимума модуля первой производной функции Ляпунова на сечении к значению функции. Траектория линеаризованной в окрестности состояния равновесия системы с начальной точкой. Методика построения условно-экстремальной функции Ляпунова.

    статья, добавлен 12.05.2018

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.

    практическая работа, добавлен 07.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.