Парный регрессионный и корреляционный анализ

Вычисление коэффициента корреляции между заработной платой и прожиточным минимумом. Построение доверительных полос для уравнения регрессии. Дисперсионный анализ и определение параметров линейной регрессионной модели методом наименьших квадратов.

Подобные документы

  • Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.

    методичка, добавлен 16.05.2016

  • Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.

    контрольная работа, добавлен 01.03.2017

  • Виды регрессии: одномерная и многомерная, линейная и нелинейная, параметрическая и непараметрическая. Корреляционный и дисперсионный анализ. Построение регрессионной модели курса украинской валюты. Построение учебной таблицы межотраслевого баланса.

    курсовая работа, добавлен 25.01.2014

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Особенности регрессионного анализа экономических моделей, его основные положения. Нахождение и оценка параметров парной регрессионной модели. Оценка значимости уравнения регрессии. Корреляционный анализ зависимости цен на недвижимость в Пермском крае.

    курсовая работа, добавлен 18.06.2015

  • Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.

    контрольная работа, добавлен 08.02.2022

  • Анализ метода проведения парного регрессионного анализа с целью выявления связи между экономическими показателями деятельности коммерческих банков. Определение коэффициента детерминации, оценка значимости уравнения регрессии, расчет ошибки аппроксимации.

    лабораторная работа, добавлен 16.11.2011

  • Построение линейной модели, параметры которой можно оценить методом наименьших квадратов. Выбор показателя корреляции. Составление таблицы дисперсионного анализа для расчета значения критерия Фишера. Расчет частных и парных коэффициентов эластичности.

    контрольная работа, добавлен 15.12.2012

  • Определение параметров парной линейной регрессии графическим методом. Ее широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Расчет параметров регрессии методом наименьших квадратов. Определение степенной функции.

    контрольная работа, добавлен 02.02.2014

  • Построение регрессионных моделей, определение оптимальной модели с помощью коэффициента детерминации. Вычисление коэффициента корреляции линейной модели, определение средней ошибки аппроксимации, общего коэффициента эластичности и критерия Фишера.

    лабораторная работа, добавлен 18.11.2014

  • Точечные и интервальные оценки случайной величины. Методика проверки статистических гипотез. Определение коэффициента корреляции, решение уравнения парной регрессии. Построение и анализ регрессионной модели. Моделирование одномерных временных рядов.

    методичка, добавлен 01.09.2012

  • Построение поля корреляции. Анализ силы связи эластичности и бета-коэффициента. Оценка статистической надежности экономической модели и результатов значимости параметров регрессии и корреляции. Выбор лучшей модели и расчет прогнозного результата.

    контрольная работа, добавлен 30.04.2014

  • Анализ графиков исходных данных и корреляционной связи. Парный коэффициент корреляции между всеми парами факторов. Регрессионные модели, значимость параметров уравнений, коэффициенты детерминации. Устранение мультиколлинеарности, регрессионные уравнения.

    контрольная работа, добавлен 30.10.2014

  • Характеристика зависимостей между среднедневной заработной платой и расходами на покупку продовольственных товаров. Расчет параметров линейной регрессии. Оценка модели через ошибку аппроксимации. Определение индекса корреляции по данным регионов.

    контрольная работа, добавлен 17.04.2011

  • Основная цель создания сообщества добавленной стоимости. Проведение расчета коэффициентов регрессии методом наименьших квадратов. Определение зависимости стоимости бренда от количества функциональных единиц. Основные характеристики регрессионной модели.

    статья, добавлен 25.03.2018

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Построение поля корреляции. Расчет линейного коэффициента корреляции. Определение параметров уравнения регрессии и интерпретация его результатов. Оценка статистической значимости коэффициентов. Построение доверительного интервала прогнозных значений.

    контрольная работа, добавлен 25.02.2014

  • Расчет линейных коэффициентов парной корреляции и детерминации. Оценка статистической значимости параметров регрессии и коэффициента корреляции с уровнем значимости 0,05. Прогноз значения признака-результата при прогнозируемом значении признака-фактора.

    контрольная работа, добавлен 25.03.2016

  • Оценка статистической значимости уравнения регрессии и ее параметров, с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции, установление мультиколлинеарных факторов. Результаты, оформление аналитической записки.

    контрольная работа, добавлен 10.03.2011

  • Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.

    контрольная работа, добавлен 19.05.2012

  • Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.

    учебное пособие, добавлен 14.04.2015

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.

    контрольная работа, добавлен 10.06.2009

  • Адекватность математической модели и методы её построения, описывающие взаимосвязи между двумя случайными величинами с помощью регрессионных уравнений. Применение методов линейного программирования для моделирования и решения производственных задач.

    практическая работа, добавлен 21.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.