Отображение метрической проекции на замкнутые выпуклые множества

Свойства метрической проекции в гильбертовом пространстве. Анализ метрики Хауедорфа в пространстве замкнутых подмножеств. Изучение метрической проекции в банаховом пространстве, при доказательстве теоремы о неподвижной точке для многозначных отображений.

Подобные документы

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Описание основных способов задания плоскостей в пространстве, их признаки и свойства. Изучение основных аксиом стереометрии. Определение возможных вариантов взаимного расположения плоскостей в пространстве. Практическая сфера применения параллельности.

    реферат, добавлен 16.12.2019

  • Принципы формирования и модулярного строения фрактальных структур в определенном структурированном пространстве на основе инъективно полученных фракталов Вичека (FV), канторова множества F(CM(1/3)) и итерационной последовательности точек F(IC(1/2)).

    статья, добавлен 21.06.2018

  • Описание логической системы, в которой множеством истинности является множество самосопряженных положительных операторов в гильбертовом пространстве. Определение операторозначной логической алгебры и некоторые ее свойства, особенности применения.

    статья, добавлен 27.02.2019

  • Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.

    лекция, добавлен 29.09.2013

  • Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.

    контрольная работа, добавлен 01.09.2017

  • Получение характеристических свойств существования элементов наилучшего приближения для подпространств L бесконечной размерности в банаховом пространстве у которой аннулятор сепарабельный, содержит минимальное тотальное подпространство гиперплоскости.

    статья, добавлен 07.08.2020

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Исследование способов задания плоскости. Взаимное расположение плоскостей в пространстве. Признаки и свойства параллельности плоскостей. Двугранные углы и угол между двумя плоскостями. Двугранный угол и его измерение. Свойства перпендикулярных плоскостей.

    реферат, добавлен 15.12.2022

  • Рассмотрены фреймы Парсеваля-Стеклова в пространстве из бесконечного числа элементов с заданными нормами. Приведена конструкция блочных фреймов в пространстве. Условия на наборы положительных чисел, которые являются нормами фреймов Парсеваля-Стеклова.

    статья, добавлен 31.05.2013

  • Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.

    курсовая работа, добавлен 09.12.2010

  • Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.

    контрольная работа, добавлен 01.03.2017

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

  • Показано, что теорема о неподвижной точке, безусловно, является одним из краеугольных камней современной математики. Ее применение простирается от фундаментальных теоретических исследований до решения практических задач в разнообразных дисциплинах.

    статья, добавлен 12.12.2024

  • Рассмотрение понятия внутренней связности, определение тензора кривизы Схоутена и изучение его свойств. Изучается строение тензора Схоутена SQS-многообразия. Определение продоложенной почти контактной метрической структуры на распределении многообразия.

    статья, добавлен 15.07.2018

  • Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.

    курсовая работа, добавлен 22.04.2011

  • Перекрестный и сравнительный анализ влияния технологий и факторов роста в образовании на развитие математического анализа. Характеристика дифференциальных уравнений и приложений уравнения Пенлеве. Исследование жордановых алгебр и метрической геометрии.

    статья, добавлен 14.12.2024

  • Движением в геометрии называется отображение, сохраняющее расстояние. Отображения, образы, композиции отображений. Движение и тождественное отображение как его частный случай. Основные теоремы о задании движений пространства, виды композиций.

    реферат, добавлен 05.03.2009

  • Основные идеи системной нечеткой интервальной математики. Доказательство теорем, показывающих, что нечеткие множества и результаты операций над ними можно рассматривать как проекции случайных множеств и результатов соответствующих операций над ними.

    статья, добавлен 12.05.2017

  • Сущность понятий скалярной и векторной математических величин. Основные свойства операций с векторами. Разложение векторов по ортам. Определение проекции вектора и их свойства. Действия с векторами в координатной форме при условие коллинеарности.

    презентация, добавлен 03.10.2012

  • Модулярный дизайн детерминистических фрактальных структур в 2D пространстве. Коды, симметрия детерминистических фракталов на основе итерационной последовательности точек в 2D пространстве. Глобальная размерность детерминистических фрактальных структур.

    статья, добавлен 21.06.2018

  • Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.

    книга, добавлен 28.12.2013

  • Международная система единиц. Величины, с которыми знакомятся дошкольники, и их характеристики. Приобретение практических умений и навыков, необходимых человеку в повседневной деятельности. Создание метрической системы мер. Линейные размеры предмета.

    реферат, добавлен 20.10.2013

  • Основные свойства центрального и параллельного методов проецирования. Комплексные чертежи точки, прямой, кривой, плоскости, их взаимное положение. Построение разверток, аксонометрические проекции. Решение расчетно-графических работ, тестовые вопросы.

    учебное пособие, добавлен 15.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.