Методы, использующие информацию о производных целевой функции
Основные методы, использующие информацию о производных при поиске точки минимума: метод средней точки, хорд, касательных Ньютона, кубической аппроксимации. Их краткое описание, примеры выведения уравнений, коэффициентов функций и координат точек.
Подобные документы
- 51. Математика
Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.
контрольная работа, добавлен 23.04.2013 Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.
творческая работа, добавлен 26.06.2011Методы одномерной безусловной оптимизации. Нахождение промежутка локализации точки минимума методом начального поиска промежутка. Итерационные методы решения задач безусловной оптимизации. Приведение задачи линейного программирования к каноническому виду.
контрольная работа, добавлен 08.08.2009Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.
контрольная работа, добавлен 30.06.2021Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.
реферат, добавлен 26.04.2014Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012Использование в градиентных методах итерационной процедуры, вектор направления убывания функции. Безусловный минимум функции, поиск точки экстремума. Методы Ньютона, покоординатного и скорейшего спуска, градиента с постоянным и переменным шагом.
презентация, добавлен 07.07.2015Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.
реферат, добавлен 07.01.2023Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.
контрольная работа, добавлен 17.05.2019Рассмотрение функций частных производных. Двойной интеграл в криволинейных координатах. Переход от декартовой системы оси к оси на плоскости. Изучение понятий, свойств и полярных координат двойного и тройного интеграла. Положение точек в пространстве.
лекция, добавлен 17.01.2014Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.
контрольная работа, добавлен 21.10.2010Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.
контрольная работа, добавлен 01.05.2010Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Изучение возможных типов особых точек кубической системы на бесконечности в случае, когда их число равно четырем. Обоснование истинности ранее полученного результата Шарипова Ш.Р., который является частным случаем обсуждаемых практических исследований.
статья, добавлен 31.05.2013- 66. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Геометрические и аналитические представления mn параметров и основные соотношения. Упорядоченные множества точек в системе координат. Методика перемещения точки по кроне дерева ПТ. Пифагоровы треугольники в пограничных областях координатной системы.
монография, добавлен 10.02.2011Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
дипломная работа, добавлен 24.05.2018Выбор аппроксимирующих функций в зависимости от условия задачи. Построение графиков функций: исходной, полученных аппроксимирующих и зависимостей погрешностей. Проведение контрольных расчетов с помощью системы Mathcad для всех методов аппроксимации.
курсовая работа, добавлен 23.12.2014Правило Лопиталя, его содержание, принципы и условия применения. Исследование неопределенности, непрерывных функций и их производных. Предел отношения двух бесконечно малых или бесконечно больших функций, соотношение с пределом отношения производных.
презентация, добавлен 21.09.2013Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.
лабораторная работа, добавлен 06.11.2021