Определение вероятности событий
Определение общего числа элементарных равновозможных событий испытания. Расчет количества благоприятствующих исходов попадания в цель. Выбор стандартных изделий из общего объема поставок трех фирм. Применение формулы Байеса в вычислениях вероятности.
Подобные документы
Общее число возможных элементарных исходов испытания, вероятность исходов, благоприятствующих событию. Поиск искомой вероятности через противоположное событие. Особенности функции распределения как универсальной характеристики случайной величины.
контрольная работа, добавлен 10.01.2015Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.
контрольная работа, добавлен 26.05.2015Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.
презентация, добавлен 29.09.2017Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Расчет вероятности события. Понятие элементарных событий, их несовместимость. Использование правила умножения. Поиск вероятности выхода прибора из строя. Теорема о произведении и сложении вероятностей для независимых событий. Расчет количества событий.
контрольная работа, добавлен 05.11.2016Определение зависимых и независимых событий в теории вероятности. Вероятность наступления события при условной вероятности. Рассмотрение явления вероятности суммы событий. Изучение формул вычисления вероятности произведения тех или иных событий.
презентация, добавлен 26.07.2015Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
реферат, добавлен 26.06.2013Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Определение вероятности замены четырех блоков исследуемого устройства. Вероятность попадания в цель первым из орудий. Порядок вычисления вероятности того, что пациент будет выписан из больницы полностью здоровым, и наличия у него одной из болезней.
контрольная работа, добавлен 09.04.2012Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.
методичка, добавлен 07.10.2015Вычисление математической вероятности, нахождение независимых событий по теореме умножения вероятностей. Определение возможной вероятности того, что ни один из трех станков не потребует внимания рабочего, расчет вероятности поломки для каждого станка.
задача, добавлен 13.10.2014Вероятность случайного события - положительное число, заключенное между нулем и единицей. Пространство элементарных событий – множество исходов испытания, которые могут появиться при его проведении. Характеристика основных аксиом теории вероятности.
курсовая работа, добавлен 21.03.2022Нахождение вероятностей происхождения событий при заданных условиях. Формула полной вероятности и формула Байеса. Определение математического ожидания, дисперсии и среднеквадратического отклонения случайной величины. Нахождение плотности распределения.
контрольная работа, добавлен 19.03.2015Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.
лекция, добавлен 18.03.2014Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.
презентация, добавлен 01.11.2013Возникновение понятия и основное положение теории вероятности. Случайное событие и примеры разно возможных событий. Абстракция событий и определение случайной величины. Закон распределения вероятности дискретных и непрерывных случайных величин.
контрольная работа, добавлен 12.12.2012Сущность события как элементарного множества пространства элементарных исходов. Характеристика основных видов: достоверный, невозможный. Классическое определение вероятности и понятие "классической схемы". Применение формулы Байеса и схема Бернулли.
лекция, добавлен 29.10.2013Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Основное положение теории вероятности – науки, занимающейся изучением закономерностей массовых случайных явлений. Возможные результаты единичной операции, или испытания. Основные категории теории вероятности. Описание пространства элементарных событий.
реферат, добавлен 16.06.2015Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.
презентация, добавлен 11.11.2022Расчет числа одинарных дуг потоковой последовательности по результатам внедрения зонда. Структура бинарной последовательности. Применение в математике модовой вероятности. Выбор пропорций будущих потоков, на основе анализа длин выпавших событий.
статья, добавлен 03.03.2018Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.
контрольная работа, добавлен 13.02.2013Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.
контрольная работа, добавлен 24.01.2012Пространство элементарных событий как совокупность возможных неблагоприятных событий, способных нанести некоторую степень ущерба исследуемому объекту. Анализ математических подходов к оценке вероятности проявления негативных событий в окружающей среде.
статья, добавлен 29.11.2018