Конечноэлементная аппроксимация

Формульное выражение процесса нахождения решения примеров в пространстве по методу приближённого значения дифференциального уравнения. Очерк свойств базисных функций и процесса построения матриц в системе коэффициентов билинейной и линейной форм.

Подобные документы

  • Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.

    статья, добавлен 13.05.2017

  • Порядок и решение дифференциального уравнения. Интегрирование как процесс нахождения решения дифференциального уравнения. Уравнение с частными производными. Теорема существования и единственности решения дифференциального уравнения первого порядка.

    реферат, добавлен 22.05.2014

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.

    статья, добавлен 21.06.2018

  • Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.

    контрольная работа, добавлен 29.03.2013

  • Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.

    контрольная работа, добавлен 01.04.2015

  • Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.

    курсовая работа, добавлен 31.10.2017

  • Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.

    курсовая работа, добавлен 10.01.2012

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.

    курсовая работа, добавлен 01.10.2012

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • Постановка задачи в операторной форме. Анализ её решения в виде линейной комбинации координатных функций. Изучение способов нахождения коэффициентов в каждом из рассматриваемых проекционных методов. Решение системы линейных алгебраических уравнений.

    методичка, добавлен 13.09.2015

  • Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.

    курсовая работа, добавлен 08.06.2013

  • Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.

    научная работа, добавлен 22.07.2014

  • Ортогональное вращение Гивенса и преобразование Хаусхолдера. Последовательность нахождения сингулярного разложения матриц. Описание числа обусловленности. Нормы в пространстве векторов и матриц. Использование разложения в методе наименьших квадратов.

    дипломная работа, добавлен 26.02.2020

  • Рассмотрение математической модели АСК-анализа как варианта общего и универсального практического решения проблемы разработки базисных функций и весовых коэффициентов для разложения в ряд по ним произвольной функции состояния идентифицируемого объекта.

    статья, добавлен 09.11.2020

  • Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 17.01.2011

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.

    учебное пособие, добавлен 22.05.2014

  • Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.

    презентация, добавлен 30.10.2013

  • Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.

    контрольная работа, добавлен 29.11.2016

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.

    реферат, добавлен 16.06.2009

  • Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).

    статья, добавлен 21.06.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.